

EurotestXC MI 3152 EurotestXC 2,5 kV MI 3152H Instruction manual Version 1.14.21, Code no. 20 752 411

Distributor:

Manufacturer:

Metrel d.d. Ljubljanska cesta 77 SI-1354 Horjul Slovenia <u>https://www.metrel.si</u> info@metrel.si

DATA BACKUP AND LOSS:

It is the user's responsibility to ensure the integrity and security of the data carrier and to regularly backup and validate the integrity of backups of the data. METREL HAS NO OBLIGATION OR LIABILITY FOR ANY LOSS, ALTERATION, DESTRUCTION, DAMAGE, CORRUPTION OR RECOVERY OF USER DATA, REGARDLESS OF WHERE THE DATA IS STORED.

Mark on your equipment certifies that it meets requirements of all subjected EU regulations.

Hereby, Metrel d.d. declares that the MI 3152 is in compliance with Directive 2014/53/EU (RED) and all other subjected EU directive. The full text of the EU declaration of conformity is available at the following internet address <u>https://www.metrel.si/DoC</u>.

© 2022 METREL

The trade names Metrel[®], Smartec[®], Eurotest[®], Auto Sequence[®] are trademarks registered in Europe and other countries.

No part of this publication may be reproduced or utilized in any form or by any means without permission in writing from METREL.

i. About the Instruction manual

- This Instruction manual contains detailed information on the EurotestXC, its key features, functionalities and use.
- It is intended for technically qualified personnel responsible for the product and its use.
- Please note that LCD screenshots in this document may differ from the actual instrument screens in details due to firmware variations and modifications.
- Metrel reserve the right to make technical modifications without notice as part of the further development of the product.

Table of Contents

1	General description	9
	1.1 Warnings and notes	9
	1.1.1 Safety warnings	9
	1.1.2 Markings on the instrument	
	1.1.3 Warnings related to safety of batteries	
	1.1.4 Warnings related to safety of measurement functions	
	1.1.5 Notes related to measurement functions	
	1.2 Testing potential on PE terminal	
	1.3 Battery and charging	
	1.4 Standards applied	
2		
	2.1 Standard set MI 3152 EurotestXC	
	2.2 Standard set MI 3152H EurotestXC 2,5 kV	
	2.2.1 Optional accessories	. 18
3	Instrument description	.19
	3.1 Front panel	19
	3.2 Connector panel	
	3.3 Back side	
	3.4 Carrying the instrument	
	3.4.1 Secure attachment of the strap	
4	Instrument operation	.25
	4.1 General meaning of keys	
	4.2 General meaning of touch gestures	
	4.3 Virtual keyboard	
	4.4 Display and sound	
	4.4.1 Terminal voltage monitor	
	4.4.2 Battery indication	.29
	4.4.3 Bluetooth	
	4.4.4 Measurement actions and messages	
	4.4.5 Result indication	
	4.4.6 Auto Sequence® result indication	
	4.5 Instruments main menu	
	4.6 General Settings	
	4.6.1 Language 4.6.2 Power Save	
	4.6.2 Power Save	
	4.6.4 User accounts	
	4.6.5 Settings	
	4.6.6 Devices	
	4.6.7 Bluetooth initialization	
	4.6.8 Initial Settings	
	4.6.9 About	
	4.7 Instrument profiles	
	4.8 Workspace Manager menu	
	4.8.1 Workspaces and Exports	
	4.8.2 Workspace Manager main menu	
	4.8.3 Operations with Workspaces	. 48

4	.8.4	Operations with Exports	.49
4	.8.5	Adding a new Workspace	.49
4	.8.6	Opening a Workspace	. 50
4	.8.7	Deleting a Workspace / Export	
4	.8.8	Importing a Workspace	
4	.8.9	Exporting a Workspace	. 52
5 N	lemo	ry Organizer	.54
5.1	М	lemory Organizer menu	.54
	.1.1	Measurement statuses	
-	.1.2	Structure Objects	
	.1.3	Selecting an active Workspace in Memory Organizer	
	.1.4	Adding Nodes in Memory Organizer	
5	.1.5	Operations in Tree menu	
5	.1.6	Searching in Memory Organizer	
6 S	ingle	e tests	
6.1	-	election modes	
-	.1.1	Single test (measurement) screens	
	.1.1	•	
	.1.2	Setting parameters, limits and comments of single tests	
	.1.3		
	.1.4	Single test screen during test	
	.1.5		
	.1.7	Editing graphs (Harmonics)	
-		Recall single test results screen	
	.1.8	Single test (inspection) screens	
6			
	.1.9	Help screens	
7 T	ests	and measurements	.93
7 T 7.1	ests V	and measurements	.93 .93
7 T 7.1 7.2	ests Vo R	and measurements oltage, frequency and phase sequence iso – Insulation resistance	. 93 .93 .96
7 T 7.1 7.2	ests V R .2.1	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest	.93 .93 .96 .98
7 T 7.1 7.2	ests V R 7.2.1 TI	and measurements oltage, frequency and phase sequence iso – Insulation resistance <i>Load pretest</i> he DAR and PI diagnostic (MI 3152H only)	.93 .93 .96 . <i>98</i> .99
7 T 7.1 7.2 7	ests V R <i>.2.1</i> TI V	and measurements oltage, frequency and phase sequence iso – Insulation resistance <i>Load pretest</i> he DAR and PI diagnostic (MI 3152H only) aristor test	.93 .93 .96 .98 .99
7 T 7.1 7.2 7 7.3	ests V R <i>.2.1</i> TI V R	and measurements oltage, frequency and phase sequence iso – Insulation resistance <i>Load pretest</i> he DAR and PI diagnostic (MI 3152H only) aristor test	.93 .96 .98 .99 .99 101
7 T 7.1 7.2 7.3 7.4 7.5 7.6	ests V R <i>:2.1</i> TI V R C	and measurements oltage, frequency and phase sequence iso – Insulation resistance <i>Load pretest</i> he DAR and PI diagnostic (MI 3152H only) aristor test	.93 .96 .98 .99 101 103 105
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.6	ests V R <i>:2.1</i> TI V C <i>:6.1</i>	and measurements	.93 .96 .98 .99 101 103 105 106
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.7	ests V R <i>:2.1</i> TI V C C <i>:6.1</i>	and measurements	.93 .96 .98 .99 101 103 105 106 108
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.7	ests V R <i>:2.1</i> TI V C C <i>:6.1</i>	and measurements	.93 .96 .98 .99 101 103 105 106 108
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.7 7	ests R 2.1 TI V C .6.1 TC .7.1 .7.2	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest he DAR and PI diagnostic (MI 3152H only) aristor test	.93 .96 .98 .99 101 103 105 106 108 109 110
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.7 7	ests R 2.2.1 TI V C C C C.6.1 TC C.7.1 C.7.1 C.7.2 C.7.3	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest he DAR and PI diagnostic (MI 3152H only) aristor test	.93 .96 .98 .99 101 103 105 106 108 109 110 111
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.7 7	ests R <i>2.1</i> TI V <i>2.1</i> C <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest he DAR and PI diagnostic (MI 3152H only) aristor test	.93 .96 .98 .99 101 103 105 106 108 109 110 111 112
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.7 7 7	ests R 2.1 TI V: C.6.1 C.7.1 7.2 7.3 R Z.7.3 R Z	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest he DAR and PI diagnostic (MI 3152H only) aristor test. low – Resistance of earth connection and equipotential bonding ontinuity – Continuous resistance measurement with low current 1 <i>Compensation of test leads resistance</i> esting RCDs <i>RCD Uc</i> – Contact voltage <i>RCD t</i> – Trip-out time <i>RCD I</i> – Trip-out current <i>CD</i> Auto – RCD Auto test loop – Fault loop impedance and prospective fault current	.93 .93 .96 .98 .99 101 103 106 108 109 110 111 112 115
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.7 7.7 7.8	ests R 2.1 TI V: C.6.1 C.7.1 7.2 7.3 R Z.7.3 R Z	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest he DAR and PI diagnostic (MI 3152H only) aristor test	.93 .93 .96 .98 .99 101 103 106 108 109 110 111 112 115
7 7.1 7.2 7.3 7.4 7.5 7.6 7 7.7 7 7.7 7 7.8 7.9	ests V R (2.1 TI V C (6.1 TC (7.1 (7.2 (7.3 R Z () Z () Z () Z ()	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest he DAR and PI diagnostic (MI 3152H only) aristor test. low – Resistance of earth connection and equipotential bonding ontinuity – Continuous resistance measurement with low current 1 <i>Compensation of test leads resistance</i> esting RCDs <i>RCD Uc</i> – Contact voltage <i>RCD t</i> – Trip-out time <i>RCD I</i> – Trip-out current <i>CD</i> Auto – RCD Auto test loop – Fault loop impedance and prospective fault current	.93 .93 .96 .98 .99 101 103 105 106 108 109 110 111 112 115 117
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7 7.7 7 7 7.8 7.9 7.10	ests V R (2.1 T V C (.2.1 T V C (.2.1 T (.7.1 (.7.2 (.7.3 R (.7.3 R (.2.3) R (.2.1) (.2.	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest he DAR and PI diagnostic (MI 3152H only) aristor test low – Resistance of earth connection and equipotential bonding ontinuity – Continuous resistance measurement with low current 1 <i>Compensation of test leads resistance</i> esting RCDs <i>RCD Uc</i> – Contact voltage <i>RCD I</i> – Trip-out time. <i>RCD I</i> – RCD Auto test loop – Fault loop impedance and prospective fault current in system with RCD1	.93 .93 .96 .98 .99 101 103 105 106 109 110 111 112 115 117 119
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 7.10 7.11	ests R R 2.2.1 TI Vi C.6.1 C.7.1 C.7.2 C.7.3 R C.7.3 R C.7.3 C.7.4 C.7.4 C.7.4 C.7.4 C.7.4 C.7.4 C.7.4 C.7.5	and measurements	.93 .96 .98 .99 101 103 105 106 108 109 110 111 112 115 117 119 122
7 7.1 7.2 7.3 7.4 7.5 7.6 7 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ests R R 2.1 TI V C.6.1 C.7.1 C.7.1 C.7.2 C.7.3 R C C.7.3 R C C.7.1 C.7.3 C C.7.1 C C.7.1 C C.7.1 C C C C C C C C C C C C C C C C C C C	and measurements oltage, frequency and phase sequence iso – Insulation resistance Load pretest he DAR and PI diagnostic (MI 3152H only) aristor test low – Resistance of earth connection and equipotential bonding ontinuity – Continuous resistance measurement with low current <i>Compensation of test leads resistance</i> esting RCDs <i>RCD Uc – Contact voltage RCD I – Trip-out time RCD I – Trip-out current</i> Ioop – Fault loop impedance and prospective fault current in system with RCD s rcd – Fault loop impedance and prospective fault current in system with RCD 1 loop mΩ – High precision fault loop impedance and prospective fault current	.93 .96 .98 .99 101 103 106 108 109 110 111 112 115 117 119 122 125
7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.12	ests V R (2.1 TI V C (6.1 (7.1 (7.2 (7.3 R (7.3 R (7.3 R (7.3 R (7.2 (7.3 R (7.3 (7.3 R	and measurements	.93 .96 .98 .99 101 103 105 106 108 109 110 111 112 115 117 122 125 128
7 7 7.3 7.4 7.5 7.6 7 7.7 7 7.8 7.9 7.10 7.12 7.12 7.12 7.12 7.12 7.12 7.12	ests V R (2.1 TI V C (6.1 T (7.1 (7.2 (7.3 R (7.2 (7.3 R (7.3 (7.3 (7.3 (7.3 (7.3 (7.3 (7.3 (7.3 (7.3 (7.3 (7.3	and measurements	.93 .93 .96 .98 .99 101 103 105 106 108 110 111 112 115 117 112 122 123 124 125 130
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.5 7.6 7.7 7.7 7.8 7.9 7.10 7.12 7.12 7.12 7.12 7.12	ests R R <i>2.1</i> TI V C C.6.1 C C.6.1 C C.7.1 C C.7.2 C C.7.3 R C C C C C C C C C C C C C C C C C C	and measurements	.93 .93 .96 .98 .99 101 103 105 106 109 110 111 112 115 117 119 122 125 128 130 133
7 7 7.3 7.4 7.5 7.6 7 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ests R R 2.1 V 2.2.1 V C C.1 C C.1 C C.1 C C.1 C C C.1 C C C C	and measurements	.93 .93 .96 .98 .99 101 103 105 106 108 109 110 111 112 125 125 128 130 133 135
7 T 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.7 7.7 7.8 7.9 7.10 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12	ests R R 2.1 V C.1 C.1 C.1 C.1 C.1 C.1 C.1 C.1 C.1 C.1	and measurements	.93 .93 .96 .98 .99 101 103 105 106 107 112 115 117 122 123 133 135 136
7 7 7.3 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.10 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12	ests Vi R Z2.1 Ti Vi Ci T.1 Z7.1 Z7.2 Z7.3 R Z7.3 R Z2 Z3 Z4 H Z5 Z6 Z7.3 R Z9 Z4 Z5 Z6 Z7 Z8 Z9 Z9 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z1 Z2 Z3 Z4 Z5 Z6 Z7	and measurements	.93 .93 .96 .98 .99 101 103 105 106 108 110 111 112 115 121 122 123 133 135 136 137

	7.21	Harmonics	
	7.22	Currents	
	7.23	Current Clamp Meter (MI 3144)	
	7.24	ISFL – First fault leakage current (MI 3152 only)	
	7.25	IMD – Testing of insulation monitoring devices (MI 3152 only)	
	7.26	Rpe – PE conductor resistance	
	7.27	Ilumination	
	7.28	AUTO TT – Auto test for TT earthing system	
		AUTO TN (RCD) – Auto test for TN earthing system with RCD	
	7.30 7.31	AUTO TN – Auto test for TN earthing system without RCD	
	7.31	AUTO IT – Auto test for IT earthing system (MI 3152 only)	
		Z auto - Auto test for fast line and loop testing	
	7.33	R line $m\Omega - DC$ resistance measurement (MI 3144)	
	7.34	ELR Current Injection Test (MI 3144)	
	7.35	ELR Combination Time Test (MI 3144)	
	7.36	EVSE Diagnostic Test (A 1632)	
	7.37	Locator	
	7.38 7.39	Functional inspections Measurements using adapter MD 9273	
	7.39		
	7.39		
	7.39	5	
	7.39		
	7.39		
	7.39		
8	Auto	Sequences®	189
	8.1	Selection of Auto Sequences®	
	8.1.1	•	
	8.2	Organization of an Auto Sequence®	192
	8.2.1		
	8.2.2	Step by step execution of Auto Sequences [®]	
	8.2.3	3 Auto Sequence® result screen	
	8.2.4	Auto Sequence® memory screen	
9	Com	munication	198
	9.1	USB and RS232 communication	108
	9.2	Bluetooth communication with Android devices	
	9.3	Communication with Adapters	
	9.4	Bluetooth and RS232 communication with scanners	
	-		
1(rading the instrument	
11	Mair	tenance	202
	11.1	Fuse replacement	202
	11.2	Cleaning	
	11.3	Periodic calibration	
	11.4	Service	203
12	P Tech	nnical specifications	204
		-	
	12.1	R iso – Insulation resistance	
	12.2	Diagnostic test (MI 3152H only)	205
	100		205
	12.3	R low – Resistance of earth connection and equipotential bonding	
	12.4	Continuity - Continuous resistance measurement with low current	206
	-	Continuity – Continuous resistance measurement with low current	206 206

12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14	$\begin{array}{llllllllllllllllllllllllllllllllllll$	208 209 209 210 210 210 211 211 211 211
	Z auto, AUTO TT, AUTO TN, AUTO TN (RCD), AUTO IT Rpe – PE conductor resistance	
12.10	•	
	Earth 2 clamp – Contactless earthing resistance measurement (with two current	
	clamps)	
	Ro – Specific earth resistance	
	Voltage, frequency, and phase rotation	
	20.1 Phase rotation	
	0.2 Voltage	
	0.3 Prequency 0.4 Online terminal voltage monitor	
	Currents	
	Current clamp meter (MI 3144)	
	Power	
	Harmonics	
	Varistor test	
12.26	ISFL – First fault leakage current (MI 3152 only)	218
12.27	IMD (MI 3152 only)	218
12.28	Illumination	
12.29	Auto Sequences®	
12.30		
12.31		
	ELR Combination Time Test (MI 3144)	
	EVSE Diagnostic Test (A 1632)	
	Power CLAMP (MD 9273) Voltage CLAMP (MD 9273)	
	Current CLAMP (MD 9273)	
12.30	Inrush CLAMP (MD 9273)	
12.38	Harmonics U CLAMP (MD 9273)	
12.39	Harmonics I CLAMP (MD 9273)	
	General data	
Appendi	x A – Profile Notes	222
••		
A.1 A.2	Profile Austria (ALAJ) Profile Hungary (profile code ALAD)	
A.2 A.3	Profile Finland (profile code ALAC)	
A.3 A.4	Profile France (profile code ALAC)	
A.4 A.5	Profile Switzerland (profile code ALAC)	
	x B – Commanders (A 1314, A 1401)	
	A	
B.1	Warnings related to safety	
B.2	Battery	
B.3	Description of commanders	∠∠७

B.4	Operation of commanders	227
Appendi	x C – Locator receiver R10K	228
Appendi	x D – Structure objects	229
Appendi	x E – Tests and Measurements with adapters	232

1 General description

1.1 Warnings and notes

1.1.1 Safety warnings

In order to reach high level of operator safety while carrying out various measurements using the EurotestXC instrument, as well as to keep the test equipment undamaged, it is necessary to consider the following general warnings:

- Read this Instruction manual carefully, otherwise the use of the instrument may be dangerous for the operator, the instrument or for the equipment under test!
- Consider warning markings on the instrument (see next chapter for more information).
- If the test equipment is used in a manner not specified in this Instruction manual, the protection provided by the equipment could be impaired!
- Do not use the instrument or any of the accessories if any damage is noticed!
- Regularly check the instrument and accessories for correct functioning to avoid hazard that could occur from misleading results.
- Consider all generally known precautions in order to avoid risk of electric shock while dealing with hazardous voltages!
- Always check for the presence of dangerous voltage on PE test terminal of installation by touching the TEST key on the instrument or by any other method before starting single test and Auto Sequence® measurements. Make sure that the TEST key is grounded thorough human body resistance without any insulated material between (gloves, shoes, insulated floors, pens,...). PE test could otherwise be impaired and results of a single test or Auto Sequence® can mislead. Even detected dangerous voltage on PE test terminal cannot prevent running of a single test or Auto Sequence®. All such behaviour is regarded as misuse. Operator of the instrument must stop the activity immediately and eliminate the fault/connection problem before proceeding with any activity!
- Use only standard or optional test accessories supplied by your distributor!
- In case a fuse has blown follow the instructions in this manual in order to replace it! Use only fuses that are specified!
- Service, calibration or adjustment of instruments and accessories is only allowed to be carried out by a competent authorized person!
- Do not use the instrument in AC supply systems with voltages higher than 550 Va.c.
- Consider that protection category of some accessories is lower than of the instrument. Test tips and Tip commander have removable caps. If they are removed the protection falls to CAT II. Check markings on accessories!
 - cap off, 18 mm tip: CAT II up to 1000 V
 - cap on, 4 mm tip: CAT II 1000 V / CAT III 600 V / CAT IV 300 V

- The instrument comes supplied with rechargeable Ni-MH battery cells. The cells should only be replaced with the same type as defined on the battery compartment label or as described in this manual. Do not use standard alkaline battery cells while the power supply adapter is connected, otherwise they may explode!
- Hazardous voltages exist inside the instrument. Disconnect all test leads, remove the power supply cable and switch off the instrument before removing battery compartment cover.
- Do not connect any voltage source on C1/C2 inputs. It is intended only for connection of current clamps. Maximal input voltage is 3 V!

1.1.2 Markings on the instrument

Read the Instruction manual with special care to safety operation«. The symbol requires an action!

Do not use the instrument in AC supply systems

with voltages higher than 550 Va.c.!

CE Mark on your equipment certifies that this equipment meets requirements of all subjected EU regulations.

This equipment shall be recycled as electronic waste.

1.1.3 Warnings related to safety of batteries

- When connected to an installation, the instruments battery compartment can contain hazardous voltage inside! When replacing battery cells or before opening the battery/fuse compartment cover, disconnect any measuring accessory connected to the instrument and turn off the instrument,
- Ensure that the battery cells are inserted correctly otherwise the instrument will not operate and the batteries could be discharged.
- Do not recharge alkaline battery cells!
- Use only power supply adapter delivered from the manufacturer or distributor of the test equipment!

1.1.4 Warnings related to safety of measurement functions

Insulation resistance

- Insulation resistance measurement should only be performed on de-energized objects!
- Do not touch the test object during the measurement or before it is fully discharged! Risk of electric shock!

Continuity functions

Continuity measurements should only be performed on de-energized objects!

1.1.5 Notes related to measurement functions

Insulation resistance

- The measuring range is decreased if using Plug commander.
- If a voltage of higher than 30 V (AC or DC) is detected between test terminals, the measurement will not be performed.
- Load pretest detects possible connection of appliances to the system during test. Test eliminates possible damage to the equipment that could be connected to the system during insulation resistance measurement.
- Load pretest is carried out between L/L1 and N/L2 terminals regardless of the Type Riso parameter setting.
- Load pretest is carried out only when parameter Uiso \leq 1000 V.

Diagnostic test

- If any insulation resistance values (*R_{ISO}(15 s) or R_{ISO}(60 s)*) are over-ranged the DAR factor is not calculated. The result field is blank: DAR:____!
- If any insulation resistance values (*R_{ISO}(60 s) or R_{ISO}(10 min)*) are over-ranged the **PI** factor is not calculated. The result field is blank: PI :____!

R low, Continuity

- If a voltage of higher than 10 V (AC or DC) is detected between test terminals, the measurement will not be performed.
- Parallel loops may influence on test results.
- In some kind of PRCDs types (PRCD-3p and PRCD-S+), the protective conductor is monitored. For protective conductor resistance measurement a test current of 200 mA is required. Direct application will cause tripping of PRCD, so PE conductor measurement is not possible.

In this case use a test parameter **Current** set to **'ramp'**, where special ramp curve is used for PE conductor resistance measurement without tripping of PRCD. If **Current** parameter is set to **'normal'**, a standard test current curve is used.

Earth, Earth 2 clamp, Ro

- If voltage between test terminals is higher than 10 V (Earth, Earth 2 clamps) or 30 V (Ro) the measurement will not be performed.
- Contactless earthing resistance measurement (using two current clamps) enables simple testing of individual earthing rods in large earthing system. It is especially suitable for use in urban areas because there is usually no possibility to place the test probes.
- For two clamps earth resistance measurement clamps A 1018 and A 1019 should be used. Clamps A 1391 are not supported. The distance between clamps should be at least 30 cm.
- For specific earth resistance measurements ρ Adaptor A 1199 should be used.

RCD t, RCD I, RCD Uc, RCD Auto

- RCD t and RCD I measurements will only be performed if the contact voltage in the pretest at nominal differential current is lower than the set contact voltage limit!
- Parameters set in one function are also kept for other RCD functions!
- Selective (time-delayed) RCDs have delayed response characteristics. As the contact voltage pre-test or other RCD tests influence the time delayed RCD it takes a certain period to recover into normal state. Therefore, a time delay of 30 s is inserted before performing trip-out test by default.
- Portable RCDs (PRCD, PRCD-2p, PRCD-3p, PRCD-S, PRCD-S+ and PRCD-K) are tested as general (non-delayed) RCDs. Trip-out times, trip-out currents and contact voltage limits are equal to limits of general (non-delayed) RCDs.
- In some kind of PRCDs types (PRCD-3p, PRCD-S+ and PRCD-K), the protective conductor is monitored and carried out in the opposite direction through current sensor

circuitry. During periodic testing – when fault current flows through phase and protective conductor – this can cause misunderstanding, because PRCD reacts at half the tripping fault current. In order to prevent this, use parameter **Sensitivity** set to **'Ipe monitoring'**, where test current will be a half of selected nominal tripping current.

If **Sensitivity** parameter is set to **'standard'**, a test current with nominal tripping current is used.

- The a.c. part of MI and EV RCDs is tested as general (non-delayed) RCDs.
- The d.c part of MI and EV RCDs is tested with a d.c. test current. The Pass limit is between 0.5 and 1.0 IdN_{DC}.
- The Zs rcd function takes longer to complete but offers much better accuracy of fault loop resistance (in comparison to the R_L sub-result in Contact voltage function).
- Auto test is finished without x5 tests in case of testing the RCD types A, F, B and B+ with rated residual currents of I_{dN} = 300 mA, 500 mA, and 1000 mA or testing the RCD type AC with rated residual current of I_{dN} = 1000 mA. In this case Auto test result passes if all other results pass, and indications for x5 are omitted.
- Auto test is finished without x1 tests in case of testing the RCD types B and B+ with rated residual currents of I_{dN} = 1000 mA. In this case Auto test result passes if all other results pass, and indications for x1 are omitted (MI 3152 only).
- Tests for sensitivity Idn(+) and Idn(-) are omitted for selective type RCD.
- Trip out time measurement for B and B+ type RCDs in AUTO function is made with sinewave test current, while trip-out current measurement is made with d.c. test current (MI 3152 only).

Z loop, Zs rcd

- The specified accuracy of tested parameters is valid only if the mains voltage is stable during the measurement.
- The measurement accuracy and immunity against noise are higher if **I test** parameter in Zsrcd is set to 'Standard'.
- Fault loop impedance (Z loop) measurements will trip an RCD.
- The Zs rcd measurement does not normally trip an RCD. However, if a leakage current from L to PE already flows or if a very sensitive RCD is installed (for example EV type) the RCD could trip. In this case setting parameter I test to 'Low' can help.

Z line, Voltage drop

In case of measurement of $Z_{\text{Line-Line}}$ with the instrument test leads PE and N connected together the instrument will display a warning of dangerous PE voltage. The measurement will be performed anyway.

- Specified accuracy of tested parameters is valid only if mains voltage is stable during the measurement.
- If the reference impedance is not set the value of Z_{REF} is considered as 0.00 Ω .
- The highest value of Zref, measured at different settings of the Test or Phase parameters is used for Voltage drop (ΔU) measurement in Voltage drop single test, Zauto single test, auto tests and Auto Sequences[®].
- Measuring Zref without test voltage present (disconnected test leads) will reset Zref value to initial value.

Power, Harmonics, Currents

 Consider polarity of current clamp (arrow on test clamp should be oriented toward connected load), otherwise result will be negative!

Illumination

- A 1172 and A 1173 illumination probes are supported by the instrument.
- Artificial light sources reach full power of operation after a period of time (see technical data for light sources) and should be therefore switched on for this period of time before the measurements are taken.

- For accurate measurement make sure that the milk glass bulb is lit without any shadows cast by hand, body or other unwanted objects.
- Refer to the Illuminance handbook -for more information.

Rpe

- The specified accuracy of tested parameters is valid only if the mains voltage is stable during the measurement.
- Measurement will trip an RCD if the parameter RCD is set to 'No'.
- The measurement does not normally trip an RCD if the parameter RCD is set to 'Yes'. However, the RCD can trip if a leakage current from L to PE already flows.

IMD

 It is recommended to disconnect all appliances from the tested supply to receive regular test results. Any connected appliance will influence the insulation resistance threshold test.

Z line m Ω , Z loop m Ω

 MI 3143 Euro Z 440 V, MI 3144 Euro Z 800 V or A 1143 Euro Z 290 A adapter is required for these measurements.

AutoTT, Auto TN(RCD), Auto TN, Auto IT, Z auto

- Voltage drop (ΔU) measurement in each Auto is enabled only if Z_{REF} is set.
- See notes related to Z line, Z loop, Zs rcd, Voltage drop, Rpe, IMD and ISFL single tests.

Auto Sequences®

- Metrel Auto Sequences® are designed as guidance to tests in order to significantly reduce testing time, improve work scope and increase traceability of the tests performed. METREL assumes no responsibility for any Auto Sequence® by any means. It is the user's responsibility, to check adequacy for the purpose of use of the selected Auto Sequence®. This includes type and number of tests, sequence flow, test parameters and limits.
- See notes related to single tests of selected Auto Sequence®.
- Compensate test leads resistance before entering Auto Sequences®.
- Zref value for Voltage drop test (ΔU) implemented in any Auto Sequence® should be set in single test function.

1.2 Testing potential on PE terminal

In certain instances, faults on the installation's PE wire or any other accessible metal bonding parts can become exposed to live voltage. This is a very dangerous situation since the parts connected to the earthing system are considered to be free of potential. In order to properly

check the installation against this fault the we should be used as an indicator prior to performing live tests.

Examples for application of PE test terminal

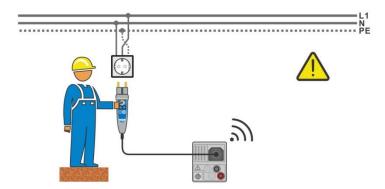


Figure 1.1: Reversed L and PE conductors (plug commander)

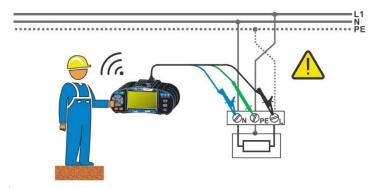


Figure 1.2: Reversed L and PE conductors (application of 3-wire test lead)

Warning!

Ŵ

Reversed phase and protection conductors! The most dangerous situation! If dangerous voltage is detected on the tested PE terminal, stop all measurements immediately and ensure the cause of the fault is eliminated before proceeding with any activity!

Test procedure

- Connect test cable to the instrument.
 - Connect test leads to the object under test, see *Figure 1.1* and *Figure 1.2*.
 - Touch test probe for at least 2 seconds.
 If PE terminal is connected to phase voltage the warning message is displayed, display is yellow coloured, instrument buzzer is activated and further measurements are disabled in RCD tests, Rpe, Z loop, Zs rcd, Z auto, AUTO TT, AUTO TN, AUTO TN (rcd) and Auto Sequences[®].

Notes

- PE test terminal is active in the RCD tests, Rpe, Z loop, Zs rcd, Z auto, Z line, ΔU, Voltage, AUTO TT, AUTO TN, AUTO TN (rcd) measurements and Auto Sequences® only!
- In case of detection of phase voltage on PE terminal in IT earthing system, the tests can be enabled/disabled according to setting of parameter 'Ignore PE warning (IT)'.
- For correct testing of PE terminal, the we has to be touched for at least 2 seconds.
- Make sure that the TEST key is grounded thorough human body resistance without any insulated material between (gloves, shoes, insulated floors, pens, ...). PE test could otherwise be impaired and results of a single test or Auto Sequence® can mislead. Even detected dangerous voltage on PE test terminal cannot prevent running of a single test or Auto Sequence®. All such behaviour is regarded as misuse. Operator of the instrument must stop the activity immediately and eliminate the fault/connection problem before proceeding with any activity!

1.3 Battery and charging

The instrument uses six AA size alkaline or rechargeable Ni-MH battery cells. Nominal operating time is declared for cells with nominal capacity of 2100 mAh. Battery condition is always displayed in the upper right display part. In case the battery is too weak the instrument will be turned off automatically.

The battery is charged whenever the power supply adapter is connected to the instrument. Internal circuit controls charging and assures maximum battery lifetime.

Refer to chapters **3.2** Connector panel and **4.4.2** Battery indication for power socket polarity and battery indication.

Notes

- The charger in the instrument is a pack cell charger. This means that the battery cells are connected in series during the charging. The battery cells have to be equivalent (same charge condition, same type and age).
- If the instrument is not to be used for a long period of time, remove all batteries from the battery compartment.
- Alkaline or rechargeable Ni-MH batteries (size AA) can be used. METREL recommends only using rechargeable batteries with a capacity of 2100 mAh or above.
- Unpredictable chemical processes can occur during the charging of battery cells that have been left unused for a longer period (more than 6 months). In this case METREL recommends repeating the charge/discharge cycle at least 2-4 times.
- If no improvement is achieved after several charge / discharge cycles, then each battery cell should be checked (by comparing battery voltages, testing them in a cell charger, etc.). It is very likely that only some of the battery cells are deteriorated. One different battery cell can cause an improper behaviour of the entire battery pack!
- The effects described above should not be confused with the normal decrease of battery capacity over time. Battery also loses some capacity when it is repeatedly charged / discharged. This information is provided in the technical specification from battery manufacturer.

1.4 Standards applied

The EurotestXC instruments are manufactured and tested in accordance with the following regulations:

regulations:	
Electromagnetic of	compatibility (EMC)
EN 61326-1	Electrical equipment for measurement, control and laboratory
	use – EMC requirements – Part 1: General requirements
EN 61326-2-2	Electrical equipment for measurement, control and laboratory use - EMC
	requirements – Part 2-2: Particular requirements - Test configurations,
	operational conditions and performance criteria for portable test,
	measuring and monitoring equipment used in low-voltage distribution
$C_{a}f_{a}f_{a}f_{a}(1)/D$	systems
Safety (LVD)	
EN 61010-1	Safety requirements for electrical equipment for measurement, control and
	laboratory use – Part 1: General requirements
EN 61010-2-030	Safety requirements for electrical equipment for measurement, control and
	laboratory use – Part 2-030: Particular requirements for testing and
	measuring circuits
EN 61010-031	Safety requirements for electrical equipment for measurement, control and
	laboratory use – Part 031: Safety requirements for hand-held probe
	assemblies for electrical measurement and test
EN 61010-2-032	Safety requirements for electrical equipment for measurement, control,
	and laboratory use - Part 2-032: Particular requirements for hand-held and
	hand-manipulated current sensors for electrical test and measurement
Functionality	
EN 61557	Electrical safety in low voltage distribution systems up to 1000 V_{AC} and
	1500 V_{AC} – Equipment for testing, measuring or monitoring of protective
	measures
	Part 1: General requirements
	Part 2: Insulation resistance
	Part 3: Loop resistance
	Part 4: Resistance of earth connection and equipotential bonding
	Part 5: Resistance to earth
	Part 6: Residual current devices (RCDs) in TT and TN systems
	Part 7: Phase sequence
	Part 10: Combined measuring equipment
	Part 12: Performance measuring and monitoring devices (PMD)
DIN 5032	Photometry
	Part 7: Classification of illuminance meters and luminance meters
	rds for electrical installations and components
EN 61008-1	Residual current operated circuit-breakers without integral overcurrent
	protection for household and similar uses (RCCBs) - Part 1: General rules
EN 61009-1	Residual current operated circuit-breakers with integral overcurrent
	protection for household and similar uses (RCCBs) - Part 1: General rules
IEC 60364-4-41	Electrical installations of buildings Part 4-41 Protection for safety –
	protection against electric shock
BS 7671	IEE Wiring Regulations (18 th edition)
AS/NZS 3017	Electrical installations – Verification guidelines
IEC 62752	In-cable control and protection device for mode 2 charging of electric road
	vehicles (IC-CPD)
IEC 62955	Residual direct current detecting device (RDC-DD) to be used for mode 3
	charging of electric vehicles

2 Instrument set and accessories

2.1 Standard set MI 3152 EurotestXC

- Instrument MI 3152 EurotestXC
- Soft carrying bag
- Earth set 3-wire, 20 m
- Plug commander
- Test lead, 3 x 1.5 m
- Test probe, 3 pcs
- Crocodile clip, 3 pcs
- Set of carrying straps
- RS232-PS/2 cable
- USB cable
- Set of Ni-MH battery cells
- Power supply adapter
- CD with instruction manual, "Guide for testing and verification of low voltage installations" handbook and PC software Metrel ES Manager.
- Short instruction manual
- Calibration Certificate

2.2 Standard set MI 3152H EurotestXC 2,5 kV

- Instrument MI 3152H EurotestXC 2,5 kV
- Soft carrying bag
- Earth set 3-wire, 20 m
- Plug commander
- Test lead, 3 x 1.5 m
- 2.5 kV test lead, 2 x 1.5 m
- Test probe, 3 pcs
- Crocodile clip, 3 pcs
- Set of carrying straps
- RS232-PS/2 cable
- USB cable
- Set of Ni-MH battery cells
- Power supply adapter
- CD with instruction manual, "Guide for testing and verification of low voltage installations" handbook and PC software Metrel ES Manager.
- Short instruction manual
- Calibration Certificate

2.2.1 Optional accessories

See the attached sheet for a list of optional accessories that are available on request from your distributor.

3 Instrument description

3.1 Front panel

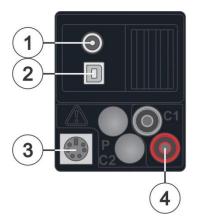


Figure 3.1: Front panel

1	4,3" COLOR TFT DISPLAY WITH TOUCH SCREEN
•	SAVE key
2	Stores actual measurement result(s)
3	CURSOR keys
3	Navigate in menus
	RUN key
4	Start / stop selected measurement.
-	Enter selected menu or option.
	View available values for selected parameter / limit.
5	OPTIONS key
5	Show detailed view of options.
6	ESC key
•	Back to previous menu.
	ON / OFF key
	Switch instrument on / off.
7	The instrument automatically switches off after 10 minutes of idle state
	(no key pressed or any touchscreen activity)
	Press and hold the key for 5 s to switch off the instrument.
8	GENERAL SETTINGS key
<u> </u>	Enter General settings menu.
9	BACKLIGHT key
	Toggle screen brightness between high and low intensity.
10	MEMORY ORGANIZER key
-	Shortcut key to enter Memory organizer menu.
11	SINGLE TESTS key
	Shortcut key to enter Single Tests menu.
12	AUTO SEQUENCE® key

Shortcut key to enter Auto Sequences® menu.

3.2 Connector panel

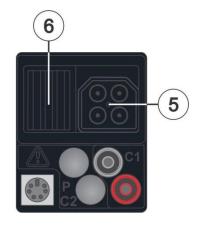


Figure 3.2: Connector panel

1 Charger socket

2	USB communication port Communication with PC USB (2.0) port
3	PS/2 communication port Communication with PC RS232 serial port Connection to optional measuring adapters Connection to barcode / RFID reader
4	C1 inputs Current clamp measuring input
5	Test connector
~	

6 Protection cover

- Maximum allowed voltage between any test terminal and ground is 550 V!
- Maximum allowed voltage between test terminals on test connector is 550 V!
- Maximum allowed voltage on test terminal C1 is 3 V!
- Maximum short-term voltage of external power supply adapter is 14 V!

3.3 Back side

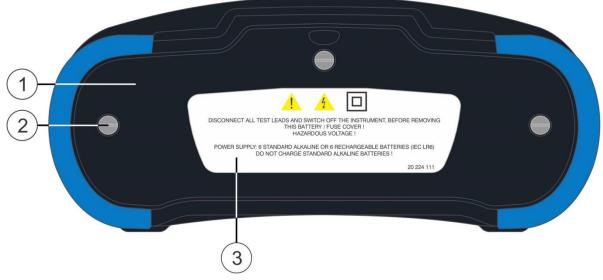


Figure 3.3: Back view

- 1 Battery / fuse compartment cover
- 2 Fixing screws for battery / fuse compartment cover
- 3 Back panel information label

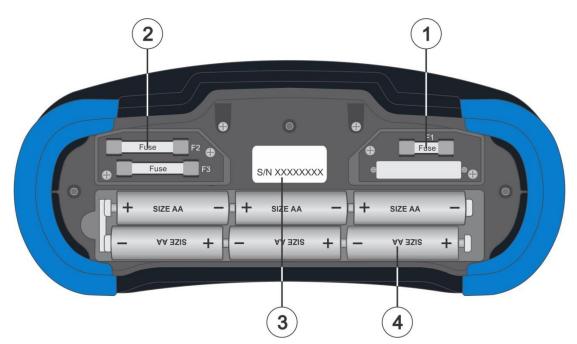


Figure 3.4: Battery and fuse compartment

- 1 Fuse F1
- M 315 mA / 250 V
- 2 Fuses F2 and F3
- F 4 A / 500 V (breaking capacity 50 kA)
- 3 Serial number label
- 4 Battery cells
- ⁴ Size AA, alkaline / rechargeable NiMH

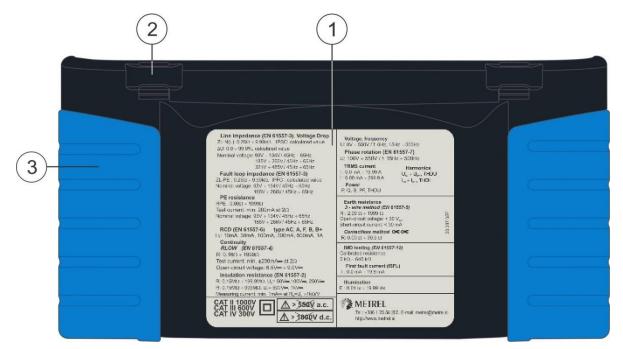


Figure 3.5: Bottom view

- 1 Bottom information label
- 2 Neck belt openings
- 3 Handling side covers

3.4 Carrying the instrument

With the neck-carrying belt supplied in standard set, various possibilities of carrying the instrument are available. Operator can choose appropriate one on basis of his operation, see the following examples:

The instrument hangs around operator's neck only – quick placing and displacing.

The instrument can be used even when placed in soft carrying bag – test cable connected to the instrument through the front aperture.

3.4.1 Secure attachment of the strap

You can choose between two methods:

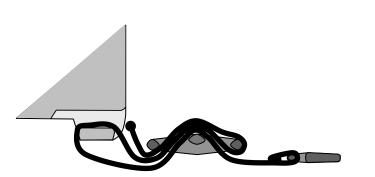


Figure 3.6: First method

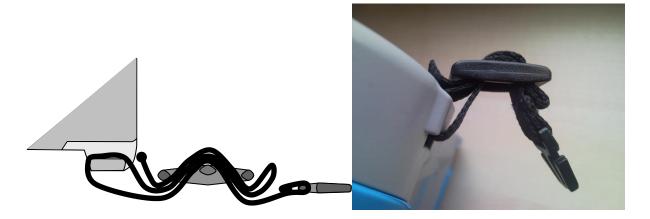


Figure 3.7: Alternative method

Please perform a periodical check of the attachment.

4 Instrument operation

The EurotestXC instrument can be manipulated via a keypad or touch screen.

4.1 General meaning of keys

	Cursor keys are used to: • select appropriate option.
ズ	Run key is used to: confirm selected option; start and stop measurements; test PE potential.
	 Escape key is used to: return to previous menu without changes; abort measurements.
	Option key is used to: • expand column in control panel.
	Save key is used to: store test results.
• 🕨	Single Tests key is used as:
	Auto Sequence® key is used as: shortcut key to enter Auto Sequences® menu.
E	Memory Organizer key is used as:
- <u>ċ</u> -	Backlight key is used to:
¢	General Settings key is used to: • enter General Settings menu.
0	 On / Off key is used to: switch On / Off the instrument; switch Off the instrument if pressed and held for 5 s.

4.2 General meaning of touch gestures

J.	 Tap (briefly touch surface with fingertip) is used to: select appropriate option; confirm selected option; start and stop measurements.
Jer)	 Swipe (press, move, lift) up / down is used to: scroll content in same level; navigate between views in same level.
Pulong	 Long press (touch surface with fingertip for at least 1 s) is used to: select additional keys (virtual keyboard); enter cross selector from single test screens.
	 Tap Escape icon is used to: return to previous menu without changes; abort measurements.

4.3 Virtual keyboard

Ð							(09:44
_{Name} Objec	t							
1 3	2	3 E	4 R	5	6 Y	⁷	8 9 1 0	
Å	© S	Ď	s F	Ğ	Å	Ĵ	? K	Ĺ
shift	z	x	Ċ	Ŭ.) B	Ň	, M	←
t er	ng	;					12#	↓

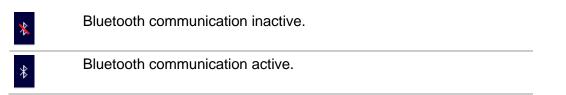
Figure 4.1: Virtual keyboard

shift	Toggle case between lowercase and capital letters. Active only when keyboard layout with alphabetical characters is selected.
←	Backspace Clears last character or all characters if selected. (If held for 2 s, all characters are selected).
←	Enter confirms new text.
12#	Activates numeric / symbols layout.
ABC	Activates alphabetic characters.
eng	English keyboard layout.
GR	Greek keyboard layout.
RU	Russian keyboard layout.
ſ	Returns to the previous menu without changes.

4.4 Display and sound

4.4.1 Terminal voltage monitor

The terminal voltage monitor displays on-line the voltages on the test terminals and information about active test terminals in the a.c. installation measuring mode.


$\stackrel{L}{}_{230} \stackrel{PE}{}_{230} \stackrel{N}{}_{230} \stackrel{N}{$	Online voltages are displayed together with test terminal indication. All test terminals are used for selected measurement.				
L PE N ● 2300 0 ●	Online voltages are displayed together with test terminal indication.				
	L and N test terminals are used for selected measurement.				
L PE N	L and PE are active test terminals.				
	N terminal should also be connected for correct input voltage condition.				
<u> </u>					
. 0 . 0 .	L and N are active test terminals.				
	PE terminal should also be connected for correct input voltage condition.				
	Polarity of test voltage applied to the output terminals, L and N.				
	L and PE are active test terminals.				
L PE N ● ● ○ ↓ - /					
L PE N O L + O	Polarity of test voltage applied to the output terminals, L and PE.				
HV+ HV-	2.5 kV Insulation measurement terminal screen. (MI 3152H only)				

4.4.2 Battery indication

The battery indication indicates the charge condition of battery and connection of external charger.

	Battery capacity indication. Battery is in good condition.
Ҁ∎∎∎∎	Battery is full.
۲ ا	Low battery. Battery is too weak to guarantee correct result. Replace or recharge the battery cells.
۲ 🗶	Empty battery or no battery.
•	Charging in progress (if power supply adapter is connected).
	Charging finished.

4.4.3 Bluetooth

4.4.4 Measurement actions and messages

Conditions on the input terminals allow starting the measurement. Consider other displayed warnings and messages. Conditions on the input terminals do not allow starting the measurement. Consider displayed warnings and messages. Proceeds to next step of the measurement. ۶Þ Stop the measurement. Result(s) can be stored. Starts test leads compensation in Rlow / continuity measurement. (\mathbf{O}) Starts Zref line impedance measurement at origin of electrical installation in Voltage Drop measurement. Zref value is set to 0.00 Ω if pressing this touch key while instrument is not connected to a voltage source. Alternates between A 1507 3-Phase Active Switch and Plug/Tip 3ph Commander. This option is available only if A 1507 is enabled in Settings menu, see chapter 4.6.5.1 Selection and configuration of measuring adapters.

ρ	Use A 1199 Specific earth resistance adapter for this test.
Ζ	Use MI 3143 Euro Z 440 V, MI 3144 Euro Z 800 V or A 1143 Euro Z 290 A adapter for this test.
LUX	Use A 1172 or A 1173 Illumination sensor for this test.
3ph	A 1507 3-Phase Active Switch not connected to the instrument. Connect A 1507 test cable to the instrument. Test / Measurement cannot be performed using A 1507.
3ph	3-Phase Active Switch connected to the instrument via test cable.
Spin	Test / Measurement can be performed using A 1507.
2	Count down timer (in seconds) within measurement.
X	Measurement is running, consider displayed warnings.
!∕ ⊋	RCD tripped-out during the measurement (in RCD functions).
	Instrument is overheated. The measurement is prohibited until the temperature decreases under the allowed limit.
-₩-	High electrical noise was detected during measurement. Results may be impaired. Indication of noise voltage above 5 V between H and E terminals during earth resistance measurement.
A.	L and N are changed.
Q	In most instrument profiles L and N test terminals are reversed automatically according to detected voltages on input terminal. In instrument profiles for countries where the position of phase and neutral connector is defined the selected feature is not working.
4	Warning! High voltage is applied to the test terminals.
4	The instrument automatically discharge tested object after finished insulation measurement.
	When an insulation resistance measurement has been performed on a capacitive object, automatic discharge may not be done immediately! The warning symbol and the actual voltage are displayed during discharge until voltage drops below 30 V.
4	Warning! Dangerous voltage on the PE terminal! Stop the activity immediately and eliminate the fault / connection problem before proceeding with any activity!
	Continuous sound warning and yellow coloured screen is also present.
CAL	Test leads resistance in R low / Continuity measurement is not compensated.
CAL	Test leads resistance in R low / Continuity measurement is compensated.

Rc	High resistance to earth of current test probes. Results may be impaired.
Rp	High resistance to earth of potential test probes. Results may be impaired.
Rc Rp	High resistance to earth of potential and current test probes. Results may be impaired.
\leq I	Too small current for declared accuracy. Results may be impaired. Check in Current Clamp Settings if sensitivity of current clamp can be increased.
	In Earth 2 Clamp measurement results are very accurate for resistances below 10 Ω . At higher values (several 10 Ω) the test current drops to few mA. The measuring accuracy for small currents and immunity against noise currents must be considered!
	Measured signal is out of range (clipped). Results are impaired.
SF	Single fault condition in IT system. (MI 3152 only)
	Fuse F1 is broken.

4.4.5 Result indication

\checkmark	Measurement result is inside the set limits (PASS).
×	Measurement result is outside the set limits (FAIL).
0	Measurement is aborted. Consider displayed warnings and messages.

4.4.6 Auto Sequence® result indication

\checkmark	All Auto Sequence® results or single tests with the set limits are inside the set limits (PASS).
X	At least one Auto Sequence® single test result with the set limits is outside the set limits (FAIL).
	All applied single tests in the Auto Sequence® are without the set limits and results without PASS / FAIL indication.

	All single tests in Auto Sequence® were skipped and/or aborted.
	Measurement result is inside the set limits (PASS).
	Measurement result is outside the set limits (FAIL).
	Measurement result without PASS / FAIL indication.
0	Measurement not performed.

4.5 Instruments main menu

From the Main menu different main operation menus can be selected.

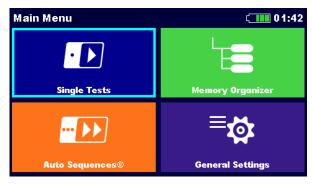


Figure 4.2: Main menu

Options

Single Tests	Single Tests Menu with single tests, see chapter 6 Single tests .
Huto Sequences®	Auto Sequences® Menu with customized test sequences, see chapter <i>8 Auto</i> <i>Sequences</i> ®.
Memory Organizer	Memory Organizer Menu for working with and documentation of test data, see chapter 5 Memory Organizer.
General Settings	General Settings Menu for setup of the instrument, see chapter 4.6 General Settings .

4.6 General Settings

In the **General settings menu** general parameters and settings of the instrument can be viewed or set.

Figure 4.3: General settings menu

Options

() Language	Language Instrument language selection.
Power Save	Power Save Brightness of LCD, enabling/disabling Bluetooth communication.
Date / Time	Date /Time Instruments Date and time.
Her Workspace Manager	Workspace Manager Manipulation with project files. Refer to chapter <i>4.8 Workspace</i> <i>Manager menu</i> for more information.
User accounts	User accounts User accounts settings. Refer to chapter 4.6.4 User accounts for more information.
Profiles	Profiles Selection of available instrument profiles. Refer to chapter 4.7 <i>Instrument profiles</i> for more information.
ेंट्रे Settings	Settings Settings of different system / measuring parameters. Refer to chapter 4.6.5 Settings for more information.
لت (⁽⁾) Devices	Devices Setting of external devices. Refer to chapter 4.6.6 Devices for more information.
₿ Bluetooth init.	Bluetooth initialization Reset Bluetooth settings.
र्ष्ट्रे 🕁 Initial Settings	Initial Settings Factory settings.
İ About	About Instrument info.

4.6.1 Language

In this menu the language of the instrument can be set.

Figure 4.4: Language menu

4.6.2 Power Save

In this menu different options for decreasing power consumption can be set.

➡ Power Save	(11:56		
Brightness	Low	>	
LCD off time	30 s	>	
Bluetooth	Save Mode	>	

Figure 4.5: Power save menu

Brightness	Setting level of LCD brightness level. Power saving at low level: ca 15%	
LCD off time	Setting LCD off after set time interval. LCD is switched on after pressing any key or touching the LCD.	
	Power saving at LCD off (at low level brightness): ca 20%	
Bluetooth	Always On: Bluetooth module is ready to communicate.	
	Save mode: Bluetooth module is set to sleep mode and is not functioning. Power saving in Save mode: approx. 7 %	

4.6.3 Date and time

In this menu date and time of the instrument can be set.

-	Date/Time						3
	17	Nov	2014		8	3	
	^	^	^		^	^	
	\sim	\sim	\sim		\sim	\sim	
		Set			Cancel		

Figure 4.6: Setting date and time menu

Note

• If the batteries are removed the set date and time will be lost.

4.6.4 User accounts

The demand to sign in can prevent from unauthorized persons to work with the instrument. In this menu user accounts can be managed:

- Setting if signing in to work with the instrument is required or not.
- Adding and deleting new users, setting their user names and passwords.

The user accounts can be managed by the administrator.

Factory set administrator password: ADMIN.

It is recommended to change factory set administrator password after first use. If the custom password is forgotten the second administrator password can be used. This password always unlocks the Account manager and is delivered with the instrument.

If a user account is set and the user is signed in the user's name will be stored in memory for each measurement.

Individual users can change their passwords.

4.6.4.1 Signing in

If signing in is demanded the user must enter the password in order to work with the instrument.

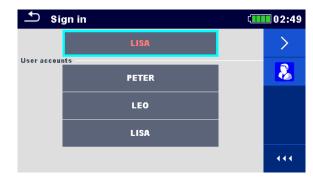
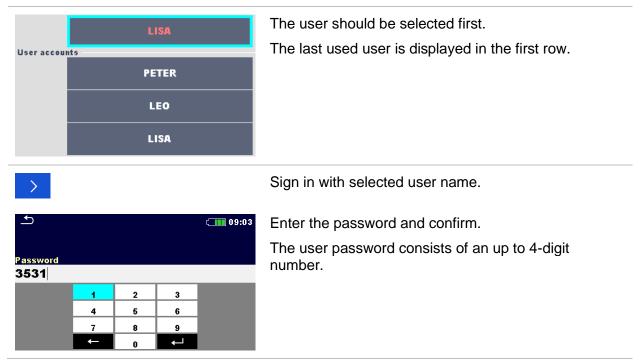



Figure 4.7: Sign in menu

Options

User signing in

Administrator signing in

The account manager password must be confirmed first. Password ADMIN	entered and
ADMIN	
The default password is ADMIN. t = t + t + t + t + t + t + t + t + t +	and/or

4.6.4.2 Changing user password, signing out

Figure 4.8: User profile menu

Options Signs out the set user. Enters procedure for changing the user's password. Ą 13:37 The user can change its password. The actual password must be entered first followed by the new password. New password 1 2 3 4 5 6 8 7 9 -0 8 Enters the Account manager menu.

4.6.4.3 Managing accounts

Figure 4.9: Account manager menu

Options

8

The Account manager menu is accessed by selecting Account manager in Sign in menu or User profile menu.

$ \begin{array}{c} \bullet \\ \hline \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \hline \hline \hline$	The account manager password must be entered and confirmed first. The default password is ADMIN.
Account manager 01:59 Sign in required YES Every reboot NO Blackbox password 111	Field for setting if signing in is required to work with the instrument. Field for setting if signing is required once or at each power on of the instrument. Field for setting Blackbox password.
$ \begin{array}{c} $	Enters procedure for changing the account manager (administrator) password. To change the password the actual and then the new password should be entered and confirmed.
Ø	Enters menu for editing user accounts.

🛨 Edit accounts	02:11 (🛨 Edit accounts	໌ 🛄 02:09
User accounts	+	User accounts	6
	×	tlusin	×

Figure 4.10: Edit accounts menu

Options

Opens the window for adding a new user.

Edit accounts O8:59 User account Add New Username tlusin Passwerd 3531 Add Cancel 111	In the Add New window the name and password of the new user are to be set. 'Add' confirms the new user data.
Change password 1 2 3 4 5 6 7 8 9 ← 0 ←	Changes password of the selected user account.
×	Deletes all user accounts. Deletes the selected user.

4.6.4.4 Setting Blackbox password

Blackbox password can be set by administrator from the Account manager menu. Set Blackbox password is valid for all users. Default Blackbox password is empty (disabled).

Options

Account manager 02:13 Sign in required YES Image: Constraint of the second seco	Add or edit Blackbox password. Enter to modify.
• 01:40	Keyboard for entering new Blackbox password is opened. Empty string disables password.
Blackbox password BLACKBOX	Confirm entry.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

→ Account m	anage	ŕ	ζ 💷	02:14	Blackbox password is changed.
Sign in required	<	YES		Ø	
Every reboot		NO	>	A	
Blackbox password		BLACKBOX			
				444	

4.6.5 Settings

In this menu different general parameters can be set.



Figure 4.11: Settings menu

	Available selection	Description
Touch screen	[ON, OFF]	Enables / disables operation with touch screer
Keys & touch sound	[ON, OFF]	Enables / disables sound when touch screen or key is pressed.
RCD Standard	[EN 61008 / EN 61009, IEC 60364-4-41 TN/IT, IEC 60364-4-41 TT, BS 7671, AS/NZS 3017, VDE 0664, VDE 0100-410 TN/IT, VDE 0100-410 TT]	Used standard for RCD tests. Refer to the end of this chapter for more information. Maximum RCD disconnection times differ in various standards. The trip-out times defined in individual standards are listed below.
EV RCD/RCM Standards	[IEC 62752, IEC 62955]	Used standards for EV RCD, MI RCD and EV RCM tests.
Isc factor	[Custom, 0.20 3.00] Default value: 1.00	Short circuit current lsc in the supply system is important for selection or verification of protective circuit breakers (fuses, over-current breaking devices, RCDs). The value should be set according to local regulative.
Length Unit	[m, ft]	Length unit for specific earth resistance measurement.

Ch1 clamp type	[A 1018, A 1391]	Model of current clamp adaptor.
Range	A 1018: [20 A] A 1391: [40 A, 300 A]	Measuring range of selected current clamp adaptor.
		Measuring range of the instrument must be considered. Measurement range of current clamp adaptor can be higher than of the instrument.
Merge fuses	[yes, no]	[Yes]: Fuse type and parameters set in one function are also kept for other functions!
		[No]: Fuse parameters will be considered only in function where they have been set.
Earthing system	[TN/TT, IT (MI 3152 only)]	Terminal voltage monitor is suited according to the selected system.
		In some measuring functions the results and parameters are suited to the selected system.
Ignore PE warning (IT)	[yes, no]	[yes]: In IT earthing system the instrument will allow to start the selected measurement regardless of PE warning detection.
		[no], In IT earthing system the instrument will block the selected measurement if PE warning is detected.
Uc pretest (IT)	[yes, no]	[yes]: In IT earthing system the instrument will inhibit the selected measurement if result exceed set Uc limit.
		[no]: In IT earthing system the instrument will present warning message, if result exceed set Uc limit; operator should confirm to proceed with selected measurement
IscMax, IscMin calculation	[yes, no]	[yes]: IscMax, IscMin calculation is enabled in Z line measurement.
		[no]: IscMax, IscMin calculation is disabled in Z line measurement.
Load pretest	[yes, no]	[yes]: Load pretest is enabled in Riso measurement.
		[no]: Load pretest is disabled
External Device	[None, Commander, A 1507]	[None]: This option is intended to disable the commander's remote keys. In case of high EM interfering noise the operation of the commander can be irregular.
		[Commander]: Working with commander enabled.
		[A 1507]: Working with 3-phase active switch enabled.
		enableu.

4.6.5.1 Selection and configuration of measuring adapters

Settings menu provide selection and configuration of Metrel measuring adapters to perform supported tests and measurements. See *Appendix E– Tests and Measurements with adapters* for details on available Metrel adapters and supported tests.

	Available selection	Description
Adapter type	[none, selected adapter]	Selection from list of available adapters.
Port	[RS232, Bluetooth]	Sets communication port of selected measuring adapter. See chapter 9.3 Communication with Adapters for more details.
Bluetooth device name	Name of selected adapter	After searching is finished, list of all available Bluetooth devices is presented. Pair the instrument with selected adapter.

4.6.5.2 RCD standard

Maximum RCD disconnection times differ in various standards. The trip-out times defined in individual standards are listed below.

	½×I _{∆N} 1)	Ι _{ΔΝ}	$2 \times I_{\Delta N}$	5×I∆N	
General RCDs (non-delayed)	t_{Δ} > 300 ms	t _∆ < 300 ms	t _∆ < 150 ms	t _∆ < 40 ms	
Selective RCDs (time-delayed)	t_{Δ} > 500 ms	130 ms < t_{Δ} < 500 ms	$60 \text{ ms} < t_{\Delta} < 200 \text{ ms}$	50 ms < t_{Δ} < 150 ms	

Table 4.1: Trip-out times according to EN 61008 / EN 61009

Test according to standard IEC/HD 60364-4-41 has two selectable options:

- IEC 60364-4-41 TN/IT and
- IEC 60364-4-41 TT

The options differ to maximum disconnection times as defined in IEC/HD 60364-4-41 Table 41.1.

	U ₀ ³⁾	$1/_2 \times I_{\Delta N}^{(1)}$	$1/2 \times I_{\Delta N}^{1}$ $I_{\Delta N}$		5×I∆N	
TN/IT	\leq 120 V	t _∆ > 800 ms	$t_{\Delta} \leq 800 \text{ ms}$			
	\leq 230 V	t _∆ > 400 ms	$t_{\Delta} \leq 400 \text{ ms}$	t 150 mg	t 10 mg	
тт	\leq 120 V	t _∆ > 300 ms	$t_{\Delta} \leq 300 \text{ ms}$	t _∆ < 150 ms	t _∆ < 40 ms	
TT —	\leq 230 V	t _∆ > 200 ms	$t_{\!\Delta} \leq 200 \ ms$			

Table 4.2: Trip-out times according to IEC/HD 60364-4-41

	$\frac{1}{2} \times I_{\Delta N}^{(1)}$	Ι _{ΔΝ}	2×I∆N	5×I∆N	
General RCDs (non-delayed)	t∆> 1999 ms	t _∆ < 300 ms	t∆< 150 ms	t _∆ < 40 ms	
Selective RCDs (time-delayed)	t _∆ > 1999 ms	130 ms < t∆< 500 ms	$60 \text{ ms} < t_{\Delta} < 200 \text{ ms}$	50 ms < t∆< 150 ms	

 Table 4.3: Trip-out times according to BS 7671

RCD type	I _{∆N} (mA)	$\frac{1}{2} \times I_{\Delta N}^{(1)}$ t_{Δ}	I _{∆N} t∆	2×I _{∆N} t∆	5×I _{∆N} t∆	Note
Ι	≤ 10		40 ms	40 ms	40 ms	
II	> 10 ≤ 30	> 999 ms	300 ms	150 ms	40 ms	Maximum break time
III	> 30		300 ms	150 ms	40 ms	Maximum break lime
IVS	> 30	> 999 ms 500 ms		200 ms	150 ms	
	> 30	> 339 1115	130 ms	60 ms	50 ms	Minimum non-actuating time

Table 4.4: Trip-out times according to AS/NZS 3017²⁾

Standard	½×I∆N	Ι _{ΔΝ}	2×I _{∆N}	5×I∆N
EN 61008 / EN 61009	300 ms	300 ms	150 ms	40 ms
IEC 60364-4-41	1000 ms	1000 ms	150 ms	40 ms
BS 7671	2000 ms	300 ms	150 ms	40 ms
AS/NZS 3017 (I, II, III)	1000 ms	1000 ms	150 ms	40 ms

Table 4.5: Maximum test times related to selected test current for general (non-delayed)RCD

Standard	$\frac{1}{2} \times I_{\Delta N}$	Ι _{ΔΝ}	2×I _{∆N}	5×I∆N
EN 61008 / EN 61009	500 ms	500 ms	200 ms	150 ms
IEC 60364-4-41	1000 ms	1000 ms	150 ms	40 ms
BS 7671	2000 ms	500 ms	200 ms	150 ms
AS/NZS 3017 (IV)	1000 ms	1000 ms	200 ms	150 ms

Table 4.6: Maximum test times related to selected test current for selective (time-delayed)RCD

¹⁾ Minimum test period for current of $\frac{1}{2} \times I_{\Delta N}$, RCD shall not trip-out.

²⁾ Test current and measurement accuracy correspond to AS/NZS 3017 requirements.

³⁾ U_0 is nominal U_{LPE} voltage.

Notes

- Trip-out limit times for PRCD, PRCD-K and PRCD-S are equal to General (non-delayed) RCDs.
- The trip-out times of VDE 0664 are equal to trip-out times of EN 61008 / EN 61009.
- The trip-out times of VDE 0100-410 TN/IT are equal to trip-out times of IEC 60364-4-41 TN/IT.
- The trip-out times of VDE 0100-410 TT are equal to trip-out times of IEC 60364-4-41 TT.

4.6.5.3	ΕV	RCD/RCM	standards
---------	----	---------	-----------

Standard	6 mA	60 mA	200 mA	300 mA
	(1 × I _{∆N})	$(10 \times I_{\Delta N})$	(33 × I∆N)	(50 × $I_{\Delta N}$)
IEC 62955 ¹⁾	< 10.0 s	< 300 ms	< 100 ms	×
IEC 62752 ²⁾	< 10.0 s	< 300 ms	×	< 40 ms

Table 4.7: Break times for d.c. residual currents

¹⁾ IEC 62955: Table 2 – Maximum values of break times for residual direct currents

²⁾ IEC 62752: Table 3 – Limit values of break time for smooth d.c. residual currents

Standard	30 mA	A 60 mA 150	
Standard	(1 × I _{∆N})	(2 × I _{∆N})	(5 × I _{∆N})
IEC 62752 ³⁾	< 300 ms	< 150 ms	< 40 ms

Table 4.8: Break times for a.c. residual currents

³⁾ IEC 62752: Table 2 – Limit values of break time for a.c. residual currents at rated frequency

Standard	Up to 30 mA	60 mA	150 mA
Standard	(1 × I∆N)	(2 × I∆N)	(5 × I∆N)
IEC 62955 ⁴⁾	No tripping	> 300 ms	> 80 ms

Table 4.9: Non-operating times for a.c. residual currents

⁴⁾ IEC 62955: Table 3 – Minimum values of non-operating time for alternating residual currents (RMS values)

4.6.6 Devices

In this menu operation with external devices is configured.

Devices		(03:00
Reading device			
Туре	<	Socket 2D (A 1545)	>
Port		Bluetooth	
Bluetooth device nam	ıe		

Figure 4.12: Device settings menu

Reading devices	
Туре	Sets appropriate reading device (QR or barcode scanner RFID reader, via aMESM application).
Port	Sets communication port of selected reading device.
Bluetooth device name	Goes to menu for pairing with selected Bluetooth device.

4.6.7 Bluetooth initialization

In this menu the Bluetooth module is reset.

♪ General Settings			c 22:07
Workspace		nitialization) O I J iles
৾৾৻	initialized. Would you like to proceed?		5
Sett	YES	NO	th init.
Initial Se	ettings Ab	out	

Figure 4.13: Bluetooth initialization menu

4.6.8 Initial Settings

With this menu, the instrument settings are set to the default factory settings. This also affects to measurement parameters and limits, also the Bluetooth device will be initialized.

Initial Settings	(08:18
– Bluetooth module will be – Instrument settings, mea: limits will reset to default v – Memory data will stay int:	surement parameters and alues.
ок	Cancel

Figure 4.14: Initial settings menu

Warning!

Following customized settings will be lost when setting the instruments to initial settings:

- measurement limits and parameters,
- global parameters, system settings, and Devices in General settings menu,
- opened Workspace will be deselected,
- user will be signed out.
- > If the batteries are removed the custom-made settings will be lost.

Note

Following customized settings remain:

- profile settings,
- Data in memory (Data in memory organizer, Workspaces and Auto Sequences®) and
- user accounts.

4.6.9 About

In this menu instrument data (name, serial number, firmware (FW) and hardware (HW) version, FW profile, hardware documentation (HD) version, fuse version and date of calibration) can be viewed.

〔 111 22:11
MI 3152 EurotestXC
20280677
2.15.9.7b26bc61
ALAA
1
2

Figure 4.15: Instrument info screen

Note

• Adapter info is also displayed, if connected.

4.7 Instrument profiles

In this menu the instrument profile can be selected from the available ones.

➡ Profiles	(<u> </u>	08:14
• ALAA – EU		•
ALAB - UK		×
		•••

Figure 4.16: Instrument profiles menu

The instrument uses different specific system and measuring settings in regard to the scope of work or country it is used. These specific settings are stored in instrument profiles.

By default, each instrument has at least one profile activated. Proper licence keys must be obtained to add more profiles to the instruments.

If different profiles are available, they can be selected in this menu.

Options

Loads the selected profile. The instrument will restart automatically with new profile loaded.

×	Deletes the selected profile.
Profiles Profiles • ALAA Warning! • ALAB Are you sure to delete profile? YES NO	Before deleting the selected profile, user is asked for confirmation.
444	Opens more options in control panel / expands column.

4.8 Workspace Manager menu

The Workspace Manager is intended to manage with different Workspaces and Exports that are stored into internal data memory.

4.8.1 Workspaces and Exports

The works with MI 3152(H) EurotestXC can be organized and structured with help of Workspaces and Exports. Exports and Workspaces contain all relevant data (measurements, parameters, limits, structure objects) of an individual work.

Workspaces are stored on internal data memory on directory WORKSPACES, while Exports are stored on directory EXPORTS. Exports are suitable for making backups of important works. To work on the instrument an Export should be imported first from the list of Exports and converted to a Workspace. To be stored as Export data a Workspace should be exported first from the list of Workspaces and converted to an Export.

4.8.2 Workspace Manager main menu

In Workspace manager Workspaces and Exports are displayed in two separated lists.

🗢 Workspace Manager	60:02	🗢 Workspace Manager	06:19
WORKSPACES:	∎⇔●	EXPORTS:	∎⇔●
Grand hotel Union	+	Grand hotel Union	
Hotel Cubo		Hotel Cubo	
Hotel Slon		Hotel Slon	
Grand hotel Toplice		Grand hotel Toplice	

Options

WORKSPACES:	List of Workspaces.
	Displays a list of Exports.
+	Adds a new Workspace.
	Refer to chapter 4.8.5 Adding a new Workspace
	for more information.
EXPORTS:	List of Exports.
	Displays a list of Workspaces.
	Opens more options in control panel / expands column.

4.8.3 Operations with Workspaces

Only one Workspace can be opened in the instrument at the same time. The Workspace selected in the Workspace Manager will be opened in the Memory Organizer.

→ Workspace Manager 40	08:15
WORKSPACES:	•
Grand hotel Union	×
Hotel Cubo	≦≧
Hotel Sion	
	444

Figure 4.18: Workspaces menu

Options

•	Marks the opened Workspace in Memory Organizer.
	Opens the selected Workspace in Memory Organizer.
	Refer to chapter 4.8.6 Opening a Workspace for more information.
×	Deletes the selected Workspace.
	Refer to chapter 4.8.7 Deleting a Workspace / Export for more information.
+	Adds a new Workspace.
	Refer to chapter 4.8.5 Adding a new Workspace
	for more information.

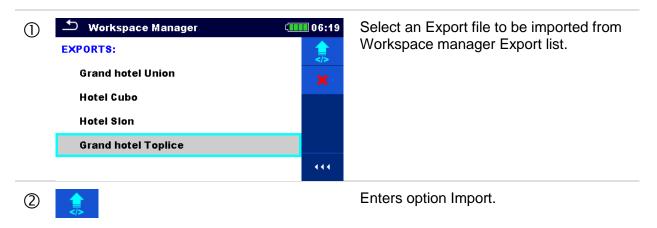
4.8.4 Operations with Exports

Figure 4.19: Workspace manager Exports menu

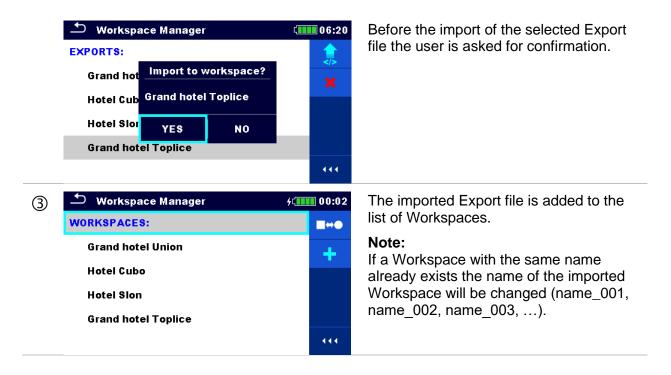
Options

4.8.5 Adding a new Workspace

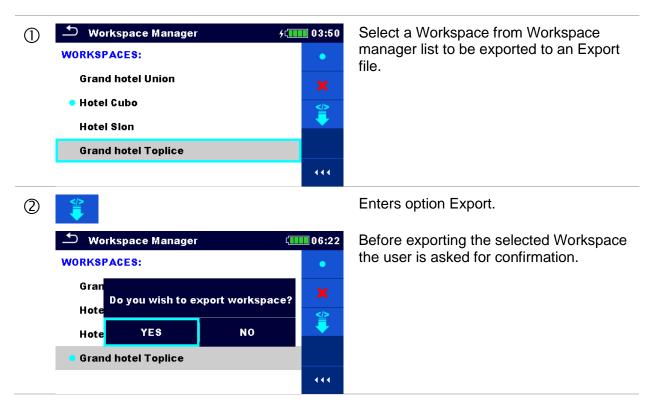
	 Workspace name	¢ζ 08:10	Keypad for entering name of a new Workspace is displayed after selecting New.
	Hotel Cubo		
	1 2 3 4 5 6 7 q w e r t y u ! @ # 5 % & * a s d f g h j shift z x c v b n eng ;	8 0 p 7 k 1 7 k 1 12# ←	
3	Workspace Manager WORKSPACES: Grand hotel Union	¢ز 08:11 •	After confirmation a new Workspace is added in the list in Main Workspace Manager menu.
	• Hotel Cubo	×	
		• • •	

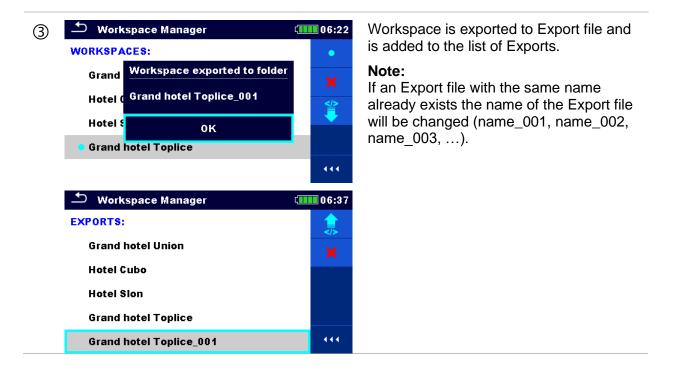

4.8.6 Opening a Workspace

Workspace Manager WORKSPACES:	¢۲ 08:12 •	Workspace can be selected from a list in Workspace manager screen.
Grand hotel Union	×	
• Hotel Cubo		
2	***	Opens a Workspace in Workspace manager.
🗂 Workspace Manager	¢⊈ 12 08:12	The opened Workspace is marked with a
WORKSPACES:	•	blue dot. The previously opened Workspace will close automatically.
Grand hotel Union	×	workspace will close automatically.
Hotel Cubo	≥</th <th></th>	


4.8.7 Deleting a Workspace / Export

Procedure	
Workspace Manager WORKSPACES: Grand hotel Union Hotel Cubo Hotel Sion	Workspace / Export to be deleted should be selected from the list of Workspaces / Exports. Opened workspace can't be deleted.
 Workspace Manager WorkSPACES: Gran Warning! Hote Are you sure to delete workspace? Hote YES NO 	Enters option for deleting a Workspace / Export. Before deleting the selected Workspace / Export the user is asked for confirmation.
③ ▲ 09:03 WORKSPACES: ■ Grand hotel Union ↓ • Hotel Cubo ↓	Workspace / Export is removed from the Workspace / Export list.


4.8.8 Importing a Workspace



51

4.8.9 Exporting a Workspace

5 Memory Organizer

Memory Organizer is a tool for storing and working with test data.

5.1 Memory Organizer menu

The data is organized in a tree structure with Structure objects and Measurements. EurotestXC instrument has a multi-level structure. The hierarchy of Structure objects in the tree is shown on *Figure 5.1*.

Figure 5.1: Default tree structure and its hierarchy

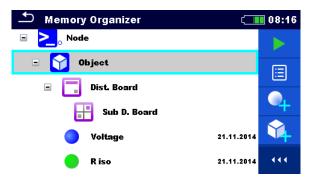


Figure 5.2: Example of a tree menu

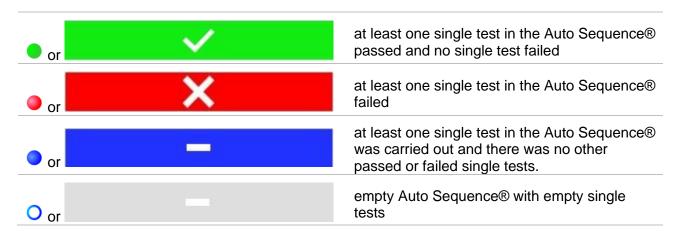
5.1.1 Measurement statuses

Each measurement has:

- Name,
- Results,
- Main result status (Pass or Fail or no status),
- Limits and parameters.

A measurement can be a Single test or an Auto Sequence®. For more information refer to chapters **7** *Tests and measurements* and **8** *Auto Sequences*®.

Statuses of Single tests


passed finished single test with test results

failed finished single test with test results

finished single test with test results and no status

O empty single test without test results

Overall statuses of Auto Sequences®

5.1.2 Structure Objects

Each Structure object has:

- an icon
- a name and
- parameters.

Optionally they can have:

- an indication of the status of the measurements under the Structure object and
- a comment or a file attached.

Figure 5.3: Structure object in tree menu

Structure objects supported by the instrument are described in *Appendix D – Structure objects*.

5.1.2.1 Measurement status indication under the Structure object

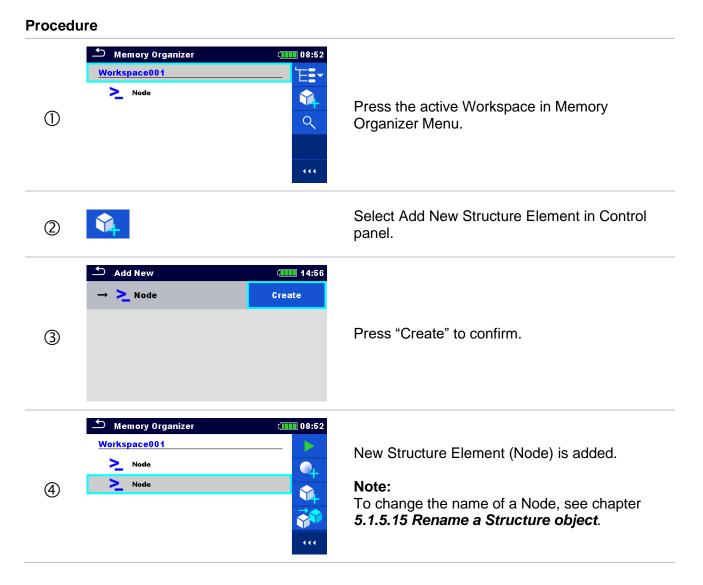
Overall status of measurements under each structure element /sub-element can be seen without spreading tree menu. This feature is useful for quick evaluation of test status and as guidance for measurements.

Options

℃ , Object	There are no measurement results under selected structure object. Measurements should be made.	Memory Organizer Memory Organizer Node Object Dist. Board Voltage R iso R low	 ○ 08:53 ○ /ul>
Object	One or more measurement result(s) under selected structure object has failed. Not all measurements under selected structure object have been made yet.	 Memory Organizer Node Object Dist. Board Voltage R iso R low 	08:55 08:39 08:54 08:54
℃ • Object	All measurements under selected structure object are completed but one or more measurement result(s) has failed.	 Memory Organizer Node Object Dist. Board Voltage R iso R low 	C 08:56 C 08:56 C 08:33 C 08:54 C 08:55 C 111

Note

 There is no status indication if all measurement results under each structure element /sub-element have passed or if there is an empty structure element / sub-element (without measurements).


5.1.3 Selecting an active Workspace in Memory Organizer

Memory Organizer and Workspace Manager are interconnected so an active Workspace can be selected also in the Memory Organizer menu.

Procedure 08:52 Memory Organizer Workspace001 E Node $\mathbf{\hat{\mathbf{Y}}}$ Press the active Workspace in Memory Q Organizer Menu. ••• Select List of Workspaces in Control panel. 2 🛨 🛛 Workspace Manager 09:10 WORKSPACES: Workspace001 Choose desired Workspace from a list of Test AutoSeq_Instal_EU_01 3 ≌ Workspaces. Use Select button to confirm selection. 4 (09:11 Memory Organizer Test AutoSeq_Instal_EU_01 E AutoSeq_Instal_EU_01 $\mathbf{\mathbf{\hat{v}}}$ New Workspace is selected and displayed on (5) Q the screen.

5.1.4 Adding Nodes in Memory Organizer

Structural Elements (Nodes) are used to ease organization of data in the Memory Organizer. One Node is a must; others are optional and can be created or deleted freely.

5.1.5 Operations in Tree menu

In the Memory organizer different actions can be taken with help of the control panel at the right side of the display. Possible actions depend on the selected element in the organizer.

5.1.5.1 Operations on measurements (finished or empty measurements)

Semory Organizer	(08:23	🗂 Memory Organizer	(08:23
🗉 🚬 Node	ā	🖃 <mark>>_</mark> _ Node	
🖃 🎧 Object		🖃 🏹 Object	
💿 🧮 Dist. Board		🗉 🧾 Dist. Board	
🔵 Voltage	21.11.2014	🔵 Voltage	21.11.2014
🔴 R iso	21.11.2014	🛑 R iso	21.11.2014
🔵 R iso		🔵 R iso	

Options	
iā	Views results of measurement.
ĿQ	The instrument goes to the measurement memory screen. Refer to chapters 6.1.7 Recall single test results screen and 8.2.4 Auto Sequence® memory screen .
	Starts a new measurement.
¹ 2	Refer to chapters 6.1.3 Single test start screen and 8.2.1 Auto Sequences ® view menu for more information.
	Saves a measurement.
	Saving of measurement on a position after the selected (empty or finished) measurement.
	Clones the measurement.
	The selected measurement can be copied as an empty measurement under the same Structure object. Refer to chapter 5.1.5.8 Clone a measurement for more information.
	Copies & Paste a measurement.
	The selected measurement can be copied and pasted as an empty measurement to any location in structure tree. Multiple "Paste" is allowed. Refer to chapter 5.1.5.11 Copy & Paste a measurement for more information.
.	Adds a new measurement.
+	The instrument goes to the Menu for adding measurements. Refer to chapter 5.1.5.6 Add a new measurement for more information.
	Views and edit comments.
	The instrument displays comment attached to the selected measurement or opens keypad for entering a new comment.
	Deletes a measurement.
×	Selected Measurement can be deleted. User is asked for confirmation before the deleting. Refer to chapter <i>5.1.5.14 Delete a measurement</i> for more information.

5.1.5.2 Operations on Structure objects

The structure object must be selected first.

🗂 Memory Organizer	08:16	Semory Organizer	11:52
🗉 🚬 _o Node		🖃 🅎 Object1	
🗉 🈭 Object		🗉 📻 Dist. Board1	
🖃 🧮 Dist. Board		🗉 😑 Gircuit1	1
Sub D. Board	4	🗉 😳 Socket12	
Voltage	21.11.2014	Socket11	
🛑 R iso	21.11.2014	Socket13	

Figure 5.5: A structure object is selected in the Tree menu

Options

 Starts a new measurement. Type of measurement (Single test or Auto Sequence®) should be selected fir After proper type is selected, the instrument goes to Single Test or Auto Sequence® selection screen. Refer to chapters 6.1 Selection modes and 8. Selection of Auto Sequences®. Saves a measurement. Saving of measurement under the selected Structure object. View / edit parameters and attachments. Parameters and attachments of the Structure object can be viewed or edited. Refer to chapter 5.1.5.3 View / Edit parameters and attachments of a Stru object for more information. Adds a new measurement. The instrument goes to the Menu for adding measurement into structure. Refer chapter 5.1.5.6 Add a new measurement for more information. Adds a new Structure object. A new Structure object can be added. Refer to chapter 5.1.5.5 Add a new Structure Object for more information. 	
After proper type is selected, the instrument goes to Single Test or Auto Sequence® selection screen. Refer to chapters 6.1 Selection modes and 8. Selection of Auto Sequences®. Saves a measurement. Saving of measurement under the selected Structure object. View / edit parameters and attachments. Parameters and attachments of the Structure object can be viewed or edited. Refer to chapter 5.1.5.3 View / Edit parameters and attachments of a Stru object for more information. Adds a new measurement. The instrument goes to the Menu for adding measurement into structure. Refer to chapter 5.1.5.6 Add a new measurement for more information. Adds a new Structure object. A new Structure object. A new Structure object.	
 Saving of measurement under the selected Structure object. View / edit parameters and attachments. Parameters and attachments of the Structure object can be viewed or edited. Refer to chapter 5.1.5.3 View / Edit parameters and attachments of a Stru object for more information. Adds a new measurement. The instrument goes to the Menu for adding measurement into structure. Refer chapter 5.1.5.6 Add a new measurement for more information. Adds a new Structure object. A new Structure object can be added. Refer to chapter 5.1.5.5 Add a new 	
 Saving of measurement under the selected Structure object. View / edit parameters and attachments. Parameters and attachments of the Structure object can be viewed or edited. Refer to chapter 5.1.5.3 View / Edit parameters and attachments of a Stru object for more information. Adds a new measurement. The instrument goes to the Menu for adding measurement into structure. Refer chapter 5.1.5.6 Add a new measurement for more information. Adds a new Structure object. A new Structure object can be added. Refer to chapter 5.1.5.5 Add a new 	
 Parameters and attachments of the Structure object can be viewed or edited. Refer to chapter 5.1.5.3 View / Edit parameters and attachments of a Stru object for more information. Adds a new measurement. The instrument goes to the Menu for adding measurement into structure. Reference chapter 5.1.5.6 Add a new measurement for more information. Adds a new Structure object. A new Structure object can be added. Refer to chapter 5.1.5.5 Add a new 	
Refer to chapter 5.1.5.3 View / Edit parameters and attachments of a Strue object for more information. Adds a new measurement. The instrument goes to the Menu for adding measurement into structure. Reference chapter 5.1.5.6 Add a new measurement for more information. Adds a new Structure object. A new Structure object can be added. Refer to chapter 5.1.5.5 Add a new	
object for more information. Adds a new measurement. The instrument goes to the Menu for adding measurement into structure. Referchapter 5.1.5.6 Add a new measurement for more information. Adds a new Structure object. A new Structure object can be added. Refer to chapter 5.1.5.5 Add a new	
 The instrument goes to the Menu for adding measurement into structure. Reference chapter <i>5.1.5.6 Add a new measurement</i> for more information. Adds a new Structure object. A new Structure object can be added. Refer to chapter <i>5.1.5.5 Add a new</i> 	cture
chapter 5.1.5.6 Add a new measurement for more information.Adds a new Structure object.A new Structure object can be added. Refer to chapter 5.1.5.5 Add a new	
A new Structure object can be added. Refer to chapter 5.1.5.5 Add a new	ər to
Attachments.	
Name and link of attachment is displayed.	
Clones a Structure object.	
Selected Structure object can be copied to same level in structure tree (clone Refer to chapter <i>5.1.5.7 Clone a Structure object</i> for more information.).
Copies & Paste a Structure object.	
Selected Structure object can be copied and pasted to any allowed location ir structure tree. Multiple "Paste" is allowed. Refer to chapter 5.1.5.9 Copy & Pa Structure object for more information.	
Cut & Paste a Structure.	

	Selected Structure with child items (sub-structures and measurements) can be moved to any allowed location in structure tree. Refer to chapter 5.1.5.12 Cut & Paste a Structure object with sub-items for more information.
	Views and edit comments.
	The instrument displays comment attached to the selected Structure object or opens keypad for entering a new comment.
	Deletes a Structure object.
	Selected Structure object and sub-elements can be deleted. User is asked for confirmation before the deleting. Refer to chapter <i>5.1.5.13 Delete a Structure object</i> for more information.
<u>R</u>	Renames a Structure object.
	Selected Structure object can be renamed via keypad. Refer to chapter 5.1.5.15 Rename a Structure object for more information.

5.1.5.3 View / Edit parameters and attachments of a Structure object

The parameters and their content are displayed in this menu. To edit the selected parameter,

tap on it or press the we key to enter menu for editing parameters.

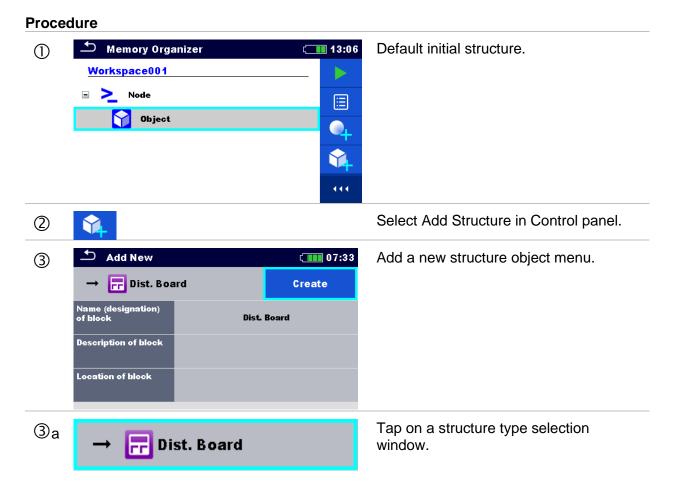
Procedure ₽ Select structure object to be edited. Memory Organizer 01:27 \triangleright Example ⊞ > Node Object t inserted to the struct Object 1 \mathbf{Y} h \mathbf{Y} ••• Select Parameters in Control panel. 2 Memory Organizer / Parameters Example of Parameters menu. ۶۲..... 17:40 3 🕎 Object None Object ation) of scription (of obiect) Location (of object) Data

	17:30 $117:30$ 11	In menu for editing parameters the parameter's value can be selected from a dropdown list or entered via keypad. Refer to chapter <i>4 Instrument</i> <i>operation</i> for more information about keypad operation. Note: Some structure parameters include custom lists. See chapter <i>5.1.5.4 Custom</i> <i>lists of Structure parameter values</i> for details.
②a	Ø	Select Attachments in Control panel.
Зa	Memory Organizer / Attachments 💷 14:41	Attachments
οu	😭 Object	The name of attachment can be seen. Operation with attachments is not
	Picture1.bmp	supported in the instrument.
Øb		Select Comments in Control panel.
3b	Dbject - Comment 01:29	View or edit comments
	This is a sample comment inserted to the structure object.	Complete comment (if exists) attached to the structure object can be seen on this screen. Press key or tap on screen to open keypad for entering a new comment.

Ł							¢.	23:24
Commei	nt: Ob	ject						
	2 W	³ E	R -	τ,	6 Y I	7 J		9 0 D P
! A	® S	Ď	\$ F	Ğ	Å	Ĵ	° K	Ĺ
shift	Ī	×	Ċ	Ŭ,) B	Ň	Å	-

5.1.5.4 Custom lists of Structure parameter values

Some structure parameters include option to create custom lists of values for particular structure parameter. These custom values can be re-used easily, by selecting it from the custom lists, and re-typing is therefore not required.

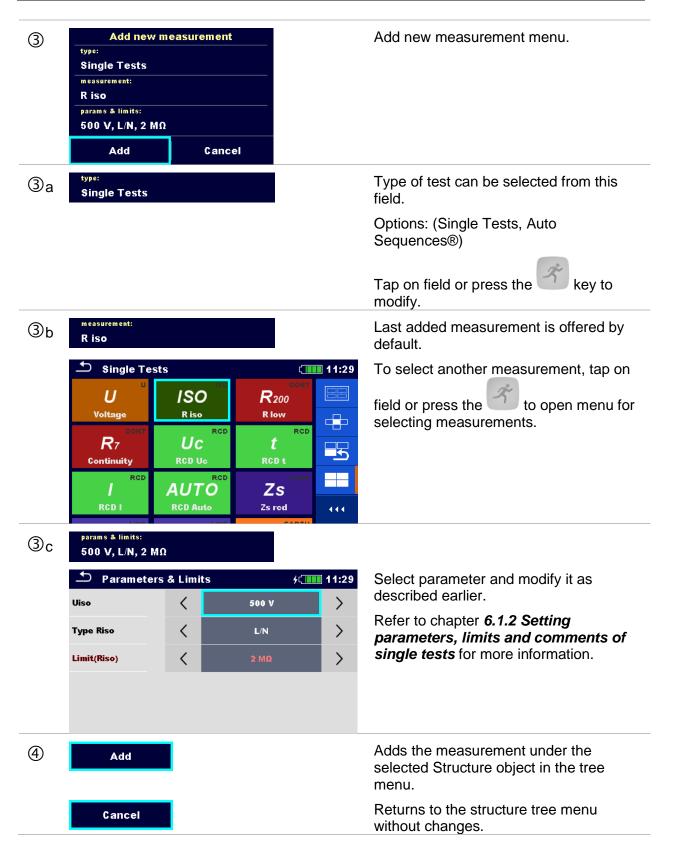

Figure 5.6: Example of Virtual keyboard with Custom list option

Proce	dure		
1	·=		Select Custom list option.
2	♪ Name	(02:57	Custom list view.
	Appliance	•	
	IT equipment	≡Î	
	Other device	•••	
3	•		Select focused value from Custom list.
@a	≡Î		Edit Custom list.

₫b	♪ Name	(03:12	Custom list Edit options.
	Appliance	+	
	• IT equipment	Ø	
	Other device	×	
5a	+		Add new value to the Custom list.
\$b	Ø		Edit selected Custom list value.
(5c	×		Delete selected Custom list value.
5d			Delete Custom list (all values).

5.1.5.5 Add a new Structure Object

This menu is intended to add new structure objects in the tree menu. A new structure object can be selected and then added in the tree menu.



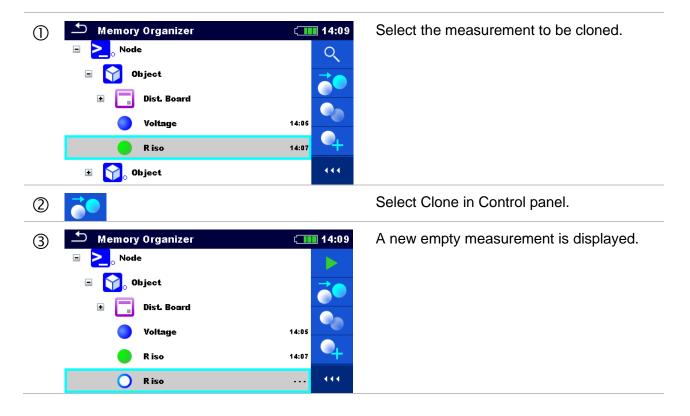
$ \begin{array}{c} \bullet \\ \hline \\ \hline$	A list of available structure items is displayed. Select one from a list. Arrow indicates the position where structure item will be inserted.
→ 🔀 Inverter → 🤯 EVSE	→ Child item to the currently selected structure item.
🗼 🐼 EVSE	Structure item located in the same level.
Image: Name (designation) of lightning Lightning Sys. Description of lightning Location of lightning	In menu for editing name and parameters the parameter's value can be selected from a dropdown list or entered via keypad. Refer to chapter 4 <i>Instrument operation fo</i> r more information about keypad operation.
(4) Create	Create new structure item.
S Memory Organizer Node \ Object Workspace001 □ > Node Image: Second state of the sec	New object added.

5.1.5.6 Add a new measurement

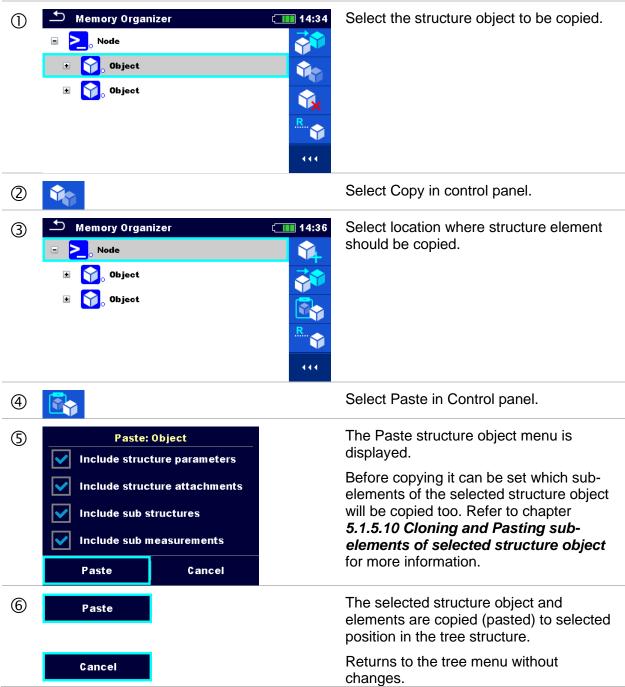
In this menu new empty measurements can be set and then added in the structure tree. The type of measurement, measurement function and its parameters are first selected and then added under the selected Structure object.

Proce	dure		
1	Memory Organizer Node Yobject	09:35	Select level in structure where measurement will be added.
2	•		Select Add measurement in Control panel.

5.1.5.7 Clone a Structure object


In this menu selected structure object can be copied (cloned) to same level in the structure tree. Cloned structure object has the same name as the original.

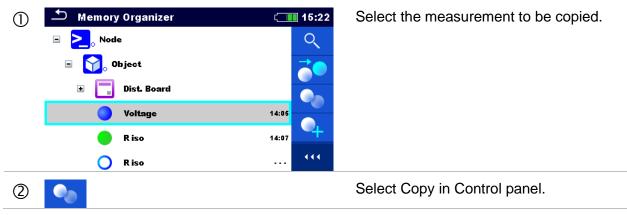
0	Memory Organizer Memory Organizer Node Telepide Image: Comparison of the second	13:45	Select the structure object to be cloned.
2			Select Clone in Control panel.
3	Clone: Object Include structure parameter Include structure attachment Include sub structures Include sub measurement Clone Cancer	ients :s	The Clone Structure object menu is displayed. Sub-elements of the selected structure object can be marked or un- marked for cloning. Refer to chapter 5.1.5.10 Cloning and Pasting sub-elements of selected structure object for more information.
4	Clone		Selected structure object is copied (cloned) to same level in the structure tree.
	Cancel		Cloning is cancelled. No changes in the Structure tree.

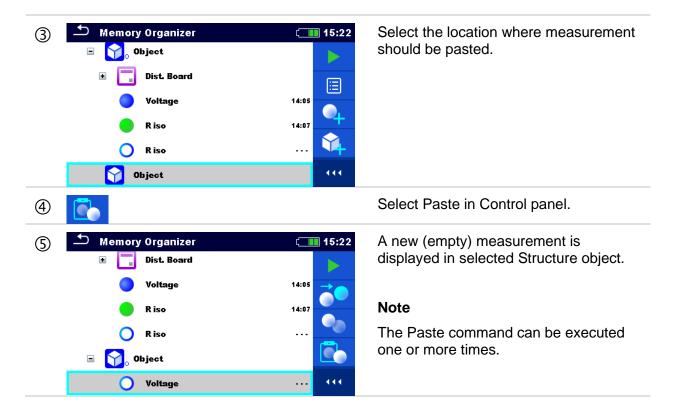

5.1.5.8 Clone a measurement

By using this function, a selected empty or finished measurement can be copied (cloned) as an empty measurement to the same level in the structure tree.

5.1.5.9 Copy & Paste a Structure object

In this menu selected Structure object can be copied and pasted to any allowed location in the structure tree.


5.1.5.10 Cloning and Pasting sub-elements of selected structure object


When structure object is selected to be cloned, or copied & pasted, additional selection of its sub-elements is needed. The following options are available:

Options					
Include structure parameters	Parameters of selected structure object will be cloned / pasted too.				
Include structure attachments	Attachments of selected structure object will be cloned / pasted too.				
Include sub structures	Structure objects in sub-levels of selected structure object will be cloned / pasted too.				
Include sub measurements	Measurements in selected structure object and sub- levels will be cloned / pasted too.				

5.1.5.11 Copy & Paste a measurement

In this menu selected measurement can be copied to any allowed location in the structure tree.

5.1.5.12 Cut & Paste a Structure object with sub-items

In this menu selected Structure object with sub-items (sub-structures and measurements) can be cut and pasted (moved) to any allowed location in the structure tree.

Proc	edure		
1	Memory Organizer Node Example Node Node Node Node Node Node_2	C 09:44	Select the structure item to be moved.
2	**		Select Cut option from Control panel.
3	Memory Organizer Example Node Node Node Node Node_2	C 09:44	Select new location where structure object (with sub-structures and measurements) should be moved.

4		Select Paste option from Control panel.
(5) Memory Organizer Node_2 Example > Node	C 09:45	The structure object (with sub-structures and measurements) is moved to selected new location and deleted from previous location in the tree structure.

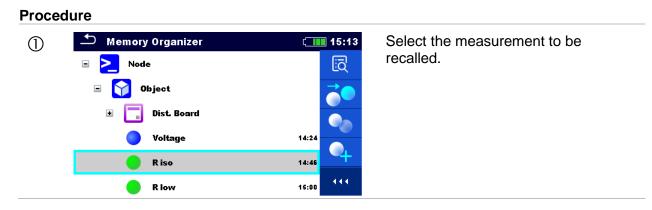
5.1.5.13 Delete a Structure object

In this menu selected Structure object can be deleted.

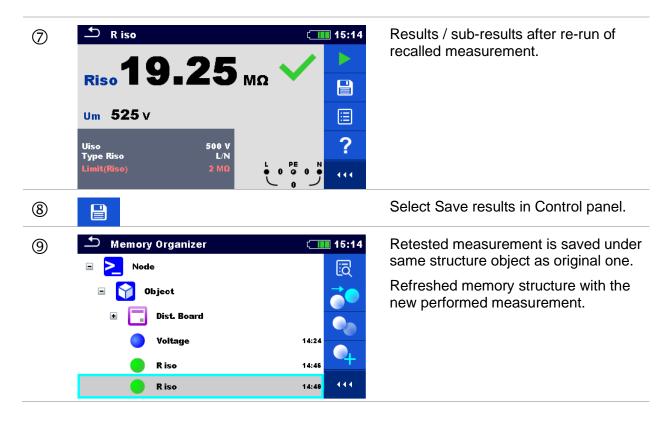
Procedure			
1	✓ Memory Organizer ■ > Node	(16:11	Select the structure object to be deleted.
	🖃 🚬 Node 🔹 🏹 Object		
	🖃 🙀 Object		
	🗉 📑 Dist. Board	R. 🕎	
	🔵 Voltage	🔽	
	🔵 R iso	***	
2	X		Select Delete in Control panel.
3	Are you sure you want to delete?		A confirmation window will appear.
	Dist. Board		
	YES NO		
	YES		Selected structure object and its sub- elements are removed.
	NO		Returns to the tree menu without changes.
(4)	🗂 Memory Organizer	16:12	Structure without deleted object.
	🖃 🚬 Node	**	
	🗈 🈭 Object		
	🗉 🅎 Object		
	🔵 Voltage		
	🔵 R iso		
	🔵 R iso		

5.1.5.14 Delete a measurement

In this menu selected measurement can be deleted.


Procedure 🗂 Memory Organizer (1)(16:36 Select a measurement to be deleted. Node --😭 Object Dist. Board • Voltage 14:05 R iso 14:07 0 444 R iso . . . Select Delete in Control panel. 2 Are you sure you want to delete? A confirmation window will appear. 3 R iso YES NO Selected measurement is deleted. YES Returns to the tree menu without NO changes. Memory Organizer (16:36 Structure without deleted measurement. (4) Node \triangleright Object \mathbf{M} ÷ Dist. Board **_** Voltage 14:05 \mathbf{Y} 14:07 R iso Object 02 ٠

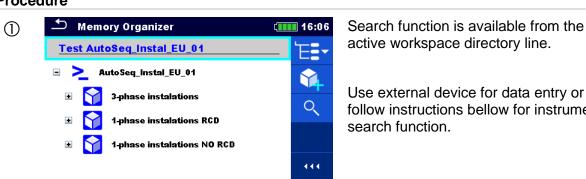
5.1.5.15 Rename a Structure object


In this menu selected Structure object can be renamed.

Proc	edure	
0	Memory Organizer 16:14 Memory Organizer Memory	Select the structure object to be renamed.
2	R	Select Rename in Control panel.
3	$ \begin{array}{c} \bullet \\ & \bullet \\ & \bullet \\ \hline \\ \\ & \bullet \\ \hline \\ \\ \hline \\ \\ & \bullet \\ \hline \\ \\ \\ \hline \\ $	Virtual keypad will appear on screen. Enter new text and confirm. Refer to chapter 4.3 Virtual keyboard for keypad operation.
4	Memory Organizer 16:14 Memory Organizer 16:14 Memory Organizer Memory Organizer	Structure object with the modified name.

5.1.5.16 Recall and Retest selected measurement

2	ā	Select Recall results in Control panel.
3	$\stackrel{\frown}{\longrightarrow} \text{Memory: R iso} \\ \hline \textbf{Riso} \textbf{10.13}_{M\Omega} \checkmark \\ \hline \textbf{Um} 525 \vee \\ \hline \textbf{Vm} 525 \vee \\ \hline V$	 Measurement is recalled. C IIII
	Uiso 500 V Type Riso L/N Limit(Riso) 2 MΩ 14:46	
3a	Memory: R iso I Uiso 500 V Type Riso L/N Limit(Riso) 2 MΩ	15:15 Parameters and limits can be viewed but cannot be edited.
4	Ċ	Select Retest in Control panel.
5	R iso Riso UmV UisoV Jiso V Linit(Riso)N	 15:13 Measurement retest starting screen is displayed. ?
5a	Parameters & Limits Uiso ✓ 500 V Type Riso ✓ L/N Limit(Riso) ✓ 2 MΩ	Parameters and limits can be viewed and edited.
6	•	Select Run in Control panel to retest the measurement.



5.1.6 Searching in Memory Organizer

In Memory organizer it is possible to search for different structure objects and parameters. Search function is available from the active workspace directory line as presented on Figure 5.7.

Figure 5.7: Active workspace directory

Procedure

active workspace directory line.

Use external device for data entry or follow instructions bellow for instrument

2	Q	Select Search in control panel to open Search setup menu.
3	Search 12:37 Name / Equip. ID ♀ Status ▶ Test date From ▼ Retest date From To (11) ↓ ↓	 The parameter that can be searched for are displayed in the search setup menu. Note: Equipment ID, Test date and Retest date (if applicable) refer only to the following structure objects: Machine, EVSE and Appliance.
3a	Name / Equip. ID	The search can be narrowed by entering a text in the Name / Equip. ID field. Strings can be entered using the on-
	Name RCD 1 2 3 4 5 6 7 8 9 0 $P4$ S D F G H J K $Lshift \overline{Z} X C V B N M \leftarrow12# , c eng \leftarrow$	screen keypad.
3b	Status	The search can be narrowed on base of statuses.
	Status Fail Empty No status	If searching by status, instrument will display all structure objects that include one or more measurements with searched status.
3c	Test dateFromToRetest dateFromTo	The search can be narrowed on base of test dates / retest dates (from / to).
	Control 16 Dec 2015 A A A A A A A A A A A A	
	Set Cancel	
		Clears all filters.

Q

4

Searches through the Memory Organizer for objects according to the set filter. The results are shown in the Search results screen presented on **Figure 5.8**.

Search results	(15:42	Search results	16:12
Page 1/1		Page 1/1	`E
1-phase instalations RCD		1-phase instalations RCD	
1-phase instalations NO RCD		1-phase instalations NO RCD	Ø
			R

Figure 5.8: Search results screen (left), structure object selected (right)

Next page (if available).
Previous page (if available).
Goes to location in Memory Organizer.
View / edit parameters and attachments.
Parameters and attachments of the Structure object can be viewed or edited. Refer to chapter 5.1.5.3 View / Edit parameters and attachments of a Structure object for more information.
Attachments.
Name and link of attachment is displayed.
Views comment.
The instrument displays comment attached to the selected Structure object.
Renames the selected Structure object.
Refer to chapter 5.1.5.15 Rename a Structure object for more information

Note

• Search result page consist of up to 50 results.

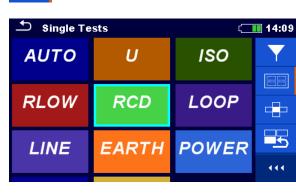
6 Single tests

Single tests can be selected in the main **Single tests** menu or in **Memory organizer** main menu and sub-menus.

6.1 Selection modes

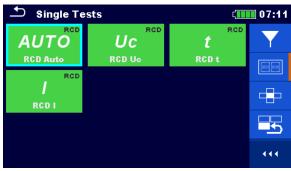
In Single tests main menu four modes for selecting single tests are available.

Options



Area Group

With help of area groups, it is possible to limit the offered single tests. The instrument has several area groups:


- The EIS group,
- the EVSE group,
- the Lightning group,
- the IT_Medical group,
- the IT Vehicles group,

In the All group all measurements are offered.

Groups

The single tests are divided into groups of similar tests.

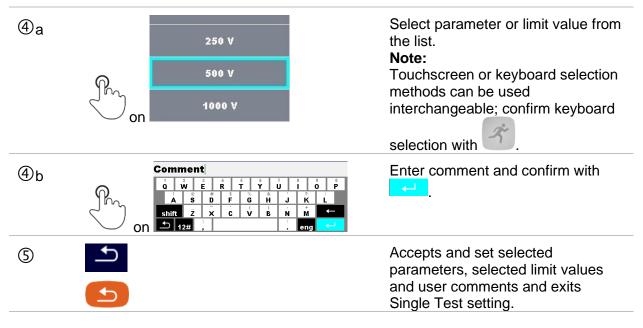
For the selected group a submenu with all single tests that belongs to the selected group is displayed.

			Cross selector
Single Te	Sts AUTO RCD Auto UC RCD Uo RCD Uo RCD UC RCD L	(14:53) (14:53) (14:5	This selection mode is the fastest for working with the keypad. Groups of single tests are organized in a row. For the selected group all single tests are displayed and easy accessible with up /down keys.
			Last used
Single Te Zauto Z auto Z auto ZL-PE Z loop	R Iow R Iow LINE ZL-L,L-N Z Iine	(14:53 /SO Riso () () () () () () () () () () () () ()	Last 9 made different single tests are displayed.

6.1.1 Single test (measurement) screens

In the Single test (measurement) screens measuring results, sub-results, limits and parameters of the measurement are displayed. In addition, on-line statuses, warnings and other info are displayed.

🕈 R iso	۲	10:03	🛨 R iso	09:18
Riso 10.	08 🗸		Riso 10.09 MΩ 🗸	
Riso IVI				
Um 525 v			Um 525 V	
Uiso Type Riso	500 V L/N	?	Uiso 500 V Type Riso L/N	
Limit(Riso)		•••	Limit(Riso) 2 MΩ	•••


Figure 6.1: Single test screen organization, example of insulation resistance measurement

Single	test	screen	organization
--------	------	--------	--------------

∽ R iso	 Header line: ESC touch key function name battery status real time clock
	Control panel (available options)
Uiso 500 ¥ Type Riso L/N Limit(Riso) 2 MΩ	Parameters (white) and limits (red)
Riso10.08	 Result field: main result(s) sub-result(s) PASS / FAIL indication
ل و المعالية (1990) المعالية (1990) المعالية (1990) المعالية (1990)	Voltage monitor with info and warning symbols

6.1.2 Setting parameters, limits and comments of single tests

Procedure	9		
1	∽ R iso	08:44	Select the test or measurement.
			The test can be entered from:
	Riso MΩ		 Single tests menu or
	Um V	?	 Memory organizer menu
	Uiso 500 V		once the empty measurement was created
	Type Riso L/N Limit(Riso) 2 MΩ	0 0	in selected object structure.
2			Select Parameters in Control panel.
	Uiso 500 V Type Riso L/N Limit(Riso) 2 MΩ		Opens parameters and limits setting menu.
3	Uiso 🗸 500 V	>	Parameters and Limits menu.
	Type Riso	>	Some single tests support user
	Limit(Riso)	>	comment entry.
	Comment 1		
	Comment 2		
Зa	€ on < > or		Modify parameter or limit value with touchscreen or keyboard buttons.
	•		
3b	and 🐔		Select parameter to be edited or limit / comment to be set.
3c	500 V		Opens parameter or limit selection list or on-screen keypad for entering comment.
	On Comment 1		

Note

 Set parameters, set limits and entered user comments are saved to the memory. When same Single test is used next time, settings and comments will remain the same.

6.1.3 Single test start screen

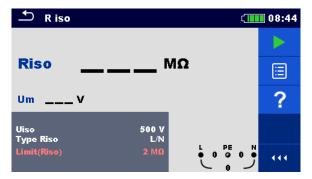
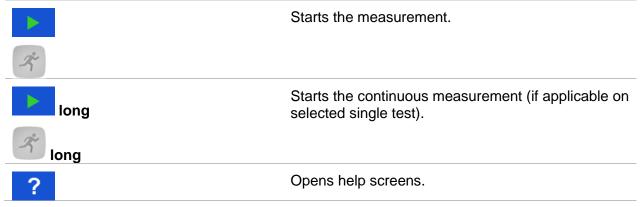
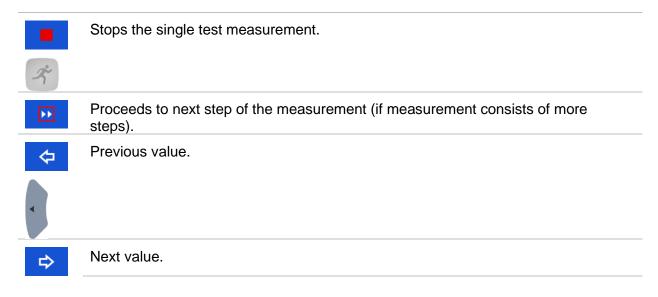



Figure 6.2: Single test start screen, example of insulation resistance measurement

Options (before test, screen was opened in Memory organizer or Single test main menu)


Uiso 500 V Type Riso L/N Limit(Riso) 2 MΩ	Opens menu for changing parameters and limits. Refer to chapter <i>6.1.2 Setting parameters, limits</i> <i>and comments of single tests</i> for more information.
Riso MΩ long on um v	Enters cross selector to select test or measurement.
•••	Expands column in control panel.

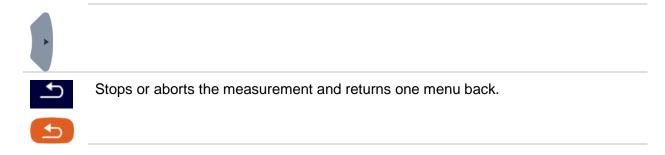
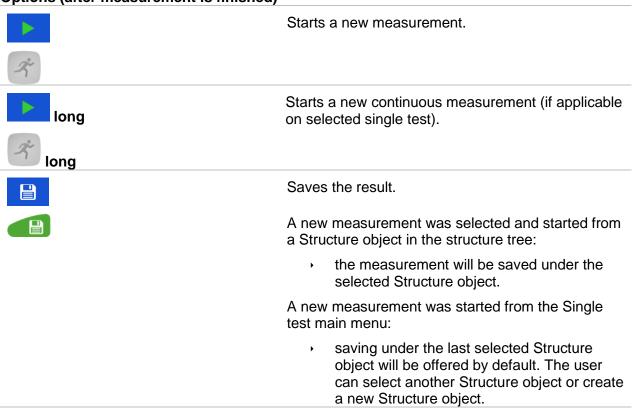
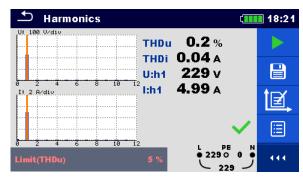

6.1.4 Single test screen during test

Figure 6.3: Single test is running, example of insulation resistance continuous measurement

Operations when test is running



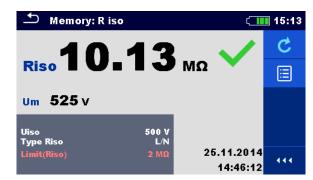
6.1.5 Single test result screen


Figure 6.4: Single test results screen, example of insulation resistance measurement results

Options (after measurement is finished)

	 By pressing the key in Memory organizer menu the measurement is saved under selected location.
	An empty measurement was selected in structure tree and started:
	 the result(s) will be added to the measurement. The measurement will change its status from 'empty' to 'finished'.
	An already carried out measurement was selected in structure tree, viewed and then restarted:
	 a new measurement will be saved under the selected Structure object.
?	Opens help screens.
	Opens screen for changing parameters and limits.
Uiso 500 V Type Riso L/N Limit(Riso) 2 MΩ	Refer to chapter <i>6.1.2 Setting parameters, limits and comments of single tests</i> for more information.
Riso 10.08 MΩ ✓ long on ^{μm 525 ν}	Enters cross selector to select test or measurement.
	Adds comment to the measurement. The instrument opens keypad for entering a comment.
	Expands column in control panel.

6.1.6 Editing graphs (Harmonics)



Options for editing graphs (start screen or after measurement is finished)

ÍZ,	Plot edit Opens control panel for editing graphs.
	Increase scale factor for y-axis.
Ţ	Decrease scale factor for y-axis.
¢ -	Move cursor position to the left
¢	Move cursor position to the right
	Toggle between U and I graph to set scale factor
f 1	Exits from editing graphs.

6.1.7 Recall single test results screen

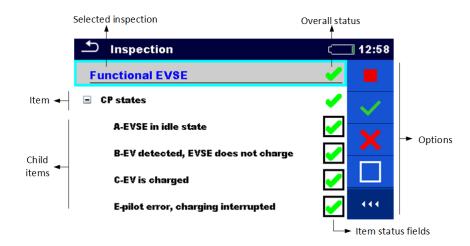


Figure 6.6: Recalled results of selected measurement, example of insulation resistance recalled results

Options	
Ċ	Retest
	Enters starting screen for a new measurement.
	Refer to chapter 6.1.3 Single test start screen for more information.
	Opens menu for viewing parameters and limits.
Uiso 500 V Type Riso L/N Limit(Riso) 2 MΩ	Refer to chapter 6.1.2 Setting parameters, limits and comments of single tests for more information.
•••	Expands column in control panel.

6.1.8 Single test (inspection) screens

Visual and Functional inspections can be treated as a special class of tests. Items to be visually or functionally checked are displayed. In addition, on-line statuses and other information are displayed. Type of inspection depends on type and profile of the instruments.

6.1.8.1 Single test (inspection) start screen

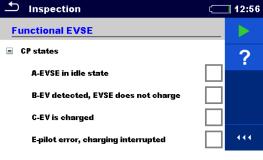
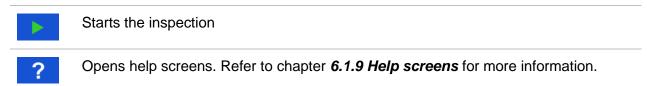



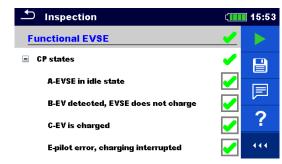
Figure 6.8: Inspection start screen

Options (inspection screen was opened in Memory organizer or from Single test main menu)

6.1.8.2 Single test (Inspection) screen during test

→ Inspection	13:04	➡ Inspection	(] 13:02
Functional EVSE		Functional EVSE	
CP states	1	CP states	×
A-EVSE in idle state		A-EVSE in idle state	
B-EV detected, EVSE does not charge	•	B-EV detected, EVSE does not charge	
C-EV is charged		C-EV is charged	•
E-pilot error, charging interrupted	•••	E-pilot error, charging interrupted	•••

Options (during test)


Functional EVSE CP states E-pilot error, charging interrupted	Selects item.
	Stops the inspection.
	Applies a pass to the selected item or group of items.
×	Applies a fail to the selected item or group of items.
	Clears status in selected item or group of items
•	Applies checked status to selected item or group of items.
Roger -	A status can be applied
	Multiple taps toggles between statuses.
ネ	Toggle between statuses.
1	Goes to the result screen.

Rules for automatic applying of statuses:

- The parent item(s) can automatically get a status on base of statuses in child items.
 - the fail status has highest priority. A fail status for any item will result in a fail status in all parent items and an overall fail result.
 - if there is no fail status in child items the parent item will get a status only if all child items have a status.
 - Pass status has priority over checked status.
- The child item(s) will automatically get a status on base of status in the parent item.
 - All child items will get the same status as applied to the parent item.

Notes

- Inspections and even inspection items inside one inspection can have different status types.
 For example, some basic inspections don't have the 'checked' status.
- Only inspections with overall statuses can be saved.

6.1.8.3 Single test (Inspection) result screen

Figure 6.10: Inspection result screen

Options (after inspection is finished)

Starts a new inspection.

Saves the result.

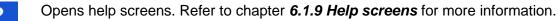
A new inspection was selected and started from a Structure object in the structure tree:

The inspection will be saved under the selected Structure object.

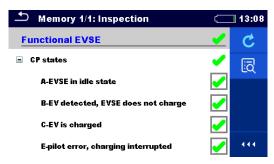
A new inspection was started from the Single test main menu:

Saving under the last selected Structure object will be offered by default. The user can select another Structure object or create a new Structure object. By

pressing the key in Memory organizer menu the inspection is saved under selected location.

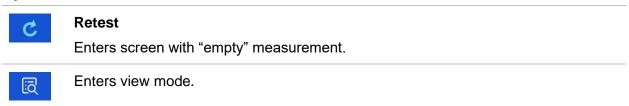

An empty inspection was selected in structure tree and started:

The result(s) will be added to the inspection. The inspection will change its status from 'empty' to 'finished'.


An already carried out inspection was selected in structure tree, viewed and then restarted:

A new measurement will be saved under the selected Structure object.

Adds comment to the measurement. The instrument opens keypad for entering a comment.



6.1.8.4 Single test (inspection) memory screen

Figure 6.11: Inspection memory screen

Options

6.1.9 Help screens

Help screens contain diagrams for proper connection of the instrument.

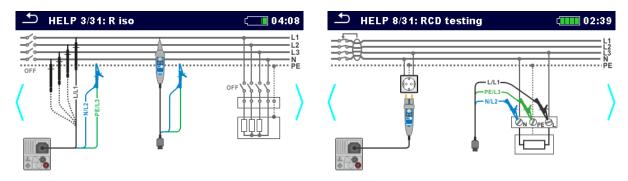


Figure 6.12: Examples of help screens

Options

00000	
?	Opens help screen.
$\mathcal{P}_{on}\langle\rangle$	Goes to previous / next help screen.
€	Back to test / measurement menu.
5	

7 Tests and measurements

See chapter 6.1 Selection modes for instructions on keys and touch screen functionality.

7.1 Voltage, frequency and phase sequence

Figure 7.1: Voltage measurement menu

Measurement parameters

System ¹⁾	Voltage system [-, 1-phase,3-phase]
Test ³⁾	Phase to be tested [-, L1, L2, L3]
Limit type	Type of limit [Voltage, %]
Earthing system	Earthing system [TN/TT, IT]
Nominal voltage ²⁾	Nominal voltage [Custom, 110V, 115V, 190V, 200V, 220V, 230V,
	240V, 380V, 400V, 415V]
Reference field ⁴⁾	Correct phase rotation [-, 1.2.3, 3.2.1]
Duration	Test duration [Off, Custom, 1 s, 3 s, 5 s]
¹⁾ There are no l	imits to set if System parameter is set to '-'.
²⁾ Active only if I	imit type is set to %.

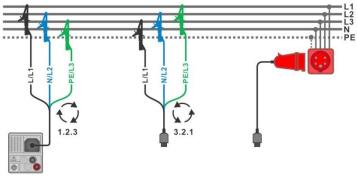
³⁾ Active only when System is set to 1-phase.

⁴⁾ Active only when System is set to 3-phase; set parameter (1.2.3 or 3.2.1) to verify correct phase sequence during Voltage test.

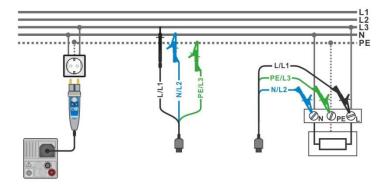
Measurement limits for TN/TT earthing system:

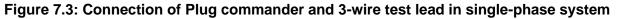
Low limit Uln ⁵⁾	Min. voltage [Off, Custom, 0 V 499 V]
High limit Uln ⁵⁾	Max. voltage [Off, Custom, 0 V 499 V]
Low limit Uln ⁶⁾	Min. voltage [Off, Custom, -20% 20%]
High limit Uln ⁶⁾	Max. voltage [Off, Custom, -20% 20%]
Low limit Ulpe ^{5,6)}	Min. voltage [Off, Custom, 0 V 499 V]
High limit Ulpe ^{5,6)}	Max. voltage [Off, Custom, 0 V 499 V]
Low limit Unpe ^{5,6)}	Min. voltage [Off, Custom, 0 V 499 V]
High limit Unpe ^{5,6)}	Max. voltage [Off, Custom, 0 V 499 V]
Low limit U12 ⁷⁾	Min. voltage [Off, Custom, 0 V 499 V]
High limit U12 ⁷⁾	Max. voltage [Off, Custom, 0 V 499 V]
Low limit U13 ⁷⁾	Min. voltage [Off, Custom, 0 V 499 V]
High limit U13 ⁷⁾	Max. voltage [Off, Custom, 0 V 499 V]
Low limit U23 ⁷⁾	Min. voltage [Off, Custom, 0 V 499 V]
High limit U237)	Max. voltage [Off, Custom, 0 V 499 V]
Low limit UII ⁸⁾	Min. voltage [Off, Custom, -20% 20%]

High limit Ull ⁸⁾	Max. voltage [Off, Custom, -20% 20%]
------------------------------	--------------------------------------


- ⁵⁾ In case of 1-phase voltage system and limit type set to voltage.
- ⁶⁾ In case of 1-phase voltage system and limit type set to %.
- ⁷⁾ In case of 3-phase voltage system and limit type set to voltage.
- ⁸⁾ In case of 3-phase voltage system and limit type set to %.

Measurement limits for IT earthing system:


Low limit U12 ^{9,11)}	Min. voltage [Off, Custom, 0 V 499 V]
High limit U12 ^{9,11)}	Max. voltage [Off, Custom, 0 V 499 V]
Low limit U12 ¹⁰⁾	Min. voltage [Off, Custom, -20% 20%]
High limit U12 ¹⁰⁾	Max. voltage [Off, Custom, -20% 20%]
Low limit U1pe ^{9,10)}	Min. voltage [Off, Custom, 0 V 499 V]
High limit U1pe ^{9,10)}	Max. voltage [Off, Custom, 0 V 499 V]
Low limit U2pe ^{9,10)}	Min. voltage [Off, Custom, 0 V 499 V]
High limit U2pe ^{9,10)}	Max. voltage [Off, Custom, 0 V 499 V]
Low limit U13 ¹¹⁾	Min. voltage [Off, Custom, 0 V 499 V]
High limit U13 ¹¹⁾	Max. voltage [Off, Custom, 0 V 499 V]
Low limit U23 ¹¹⁾	Min. voltage [Off, Custom, 0 V 499 V]
High limit U23 ¹¹⁾	Max. voltage [Off, Custom, 0 V 499 V]
Low limit UII ¹²⁾	Min. voltage [Off, Custom, -20% 20%]
High limit Ull ¹²⁾	Max. voltage [Off, Custom, -20% 20%]
0)	


- ⁹⁾ In case of 1-phase voltage system and limit type set to voltage.
- ¹⁰⁾ In case of 1-phase voltage system and limit type set to %.
- ¹¹⁾ In case of 3-phase voltage system and limit type set to voltage.
- ¹²⁾ In case of 3-phase voltage system and limit type set to %.

Connection diagrams

Figure 7.2: Connection of 3-wire test lead and optional adapter in three-phase system

Measurement procedure

- Enter the **Voltage** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads to object under test (see Figure 7.2 and Figure 7.3).
- Start the measurement.
- Stop the measurement, if Duration is set to Off.
- Save results (optional).

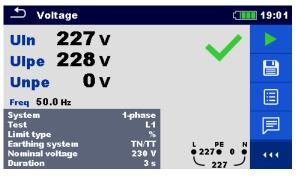


Figure 7.4: Example of Voltage measurement in single-phase system

🛨 Voltage			۲.	19:09
U12 392 V	,			
U13 391 V U23 391 V			•	
UZ3 J3 I V Freq 50.0 Hz		1.2.3		
System Limit type Earthing system		hase % N/TT		F
Nominal voltage Reference field Duration		00 V 1.2.3 3 s	$\stackrel{L1}{\smile} \stackrel{L3}{393 \bullet} \stackrel{L2}{393 \bullet} \stackrel{L2}{\smile} \stackrel{L3}{394 } \stackrel{L2}{\checkmark}$	

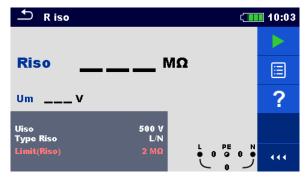
Figure 7.5: Examples of Voltage measurement in three-phase system

Measurement results / sub-results

Single-phase TN/TT system

Uln	voltage between phase and neutral conductors	
Ulpe	voltage between phase and protective conductors	
Unpe	voltage between neutral and protective conductors	
Freq	frequency	

Single-phase IT earthing system


U12	voltage between phases L1 and L2		
U1pe	voltage between phase L1 and PE		
U2pe	2pe voltage between phase L2 and PE		
Freq	frequency		

Three-phase TN/TT and IT system

U12	voltage between phases L1 and L2
U13	voltage between phases L1 and L3
U23	voltage between phases L2 and L3
Freq frequency	
Field ¹⁾	3-phase rotation sequence

¹⁾ For Pass test result, Field result must be equal to setting of Reference field parameter (1.2.3 or 3.2.1).

7.2 R iso – Insulation resistance

Measurement parameters / limits

Uiso	Nominal test voltage [50 V, 100 V, 250 V, 500 V, 1000 V, 2500 V ¹]			
Type Riso ²⁾	Type of test [-, L/PE, L/N, N/PE, L/L, L1/L2, L1/L3, L2/L3, L1/N, L2/N,			
Type Kiso	L3/N, L1/PE, L2/PE, L3/PE]			
Limit(Riso)	Limit(Riso) Min. insulation resistance [Off, Custom, 0.01 M Ω 100 M Ω]			
¹⁾ Nominal test voltage 2500 V is available on MI 3152H only.				
- 1				

²⁾ With Plug test cable or Plug commander Insulation is always measured between L/L1 and N/L2 test lead regardless of the setting. The parameter is meant for documentation.

Connection diagrams

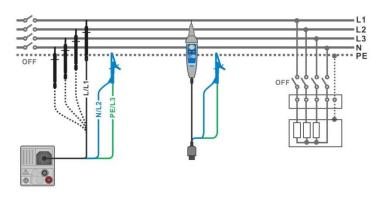


Figure 7.7: Connection of 3-wire test lead and Tip commander ($U_N \le 1 \text{ kV}$)

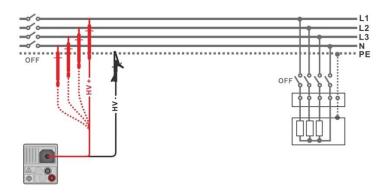


Figure 7.8: Connection of 2.5 kV test lead (U_N =2.5 kV)

Measurement procedure

•	Enter the R iso function.	

- Set test parameters / limits.
- Disconnect tested installation from mains supply and discharge installation as required.
- Connect test cable to the instrument.
 - Connect test leads to object under test (see *Figure 7.7* and *Figure 7.8*). Different test cable must be used for testing with nominal test voltage $U_N \le 1000$ V and

 U_N = 2500 V. Also, different test terminals are used. The standard 3-wire test lead, Schuko test cable or Plug / Tip commanders can be used for the insulation test with nominal test voltages \leq 1000 V. For the 2500 V insulation test the two wire 2.5 kV test lead should be used.

- Start the measurement. A longer press on TEST key or a longer press on "Start test" option on touch screen starts a continuous measurement.
- Stop the measurement. Wait until object under test is fully discharged.
- Save results (optional).

Figure 7.9: Examples of Insulation resistance measurement result

Measurement results / sub-results

RisoInsulation resistanceUmActual test voltage

7.2.1 Load pretest

High Insulation voltage can potentially damage the connected appliances during the Insulation measurement. This misuse can be prevented by enabling Load pretest functionality in Settings menu. Load pretest measures the impedance on test terminals with low and safe a.c. voltage. If impedance lower than 50 k Ω is detected, warning message is displayed, allowing to disconnect the appliances before test voltage is applied (see *Figure 7.10*). Insulation measuring voltage is applied to the test terminals only after YES is selected. NO will abort the measurement. If impedance higher than 50 k Ω is measured during the Load pretest, Insulation test will follow automatically.

Figure 7.10: Load pretest warning message

Note:

- Load pretest is carried out between L/L1 and N/L2 terminals regardless of the Type Riso parameter setting.
- Load pretest is carried out only when parameter Uiso \leq 1000 V.

7.3 The DAR and PI diagnostic (MI 3152H only)

DAR (<u>D</u>ielectric <u>A</u>bsorption <u>R</u>ation) is ratio of insulation resistance values measured after 15 seconds and after 1 minute. The DC test voltage is present during the whole period of the measurement.

$$DAR = \frac{R_{ISO}(1 \text{ min})}{R_{ISO}(15 \text{ s})}$$

PI (<u>P</u>olarization <u>I</u>ndex) is the ratio of insulation resistance values measured after 1 minute and after 10 minutes. The DC test voltage is present during the whole period of the measurement

$$PI = \frac{R_{ISO}(10 \text{ min})}{R_{ISO}(1 \text{ min})}$$

For additional information regarding PI and DAR diagnostic, please refer to Metrel's handbook **Modern insulation testing**.

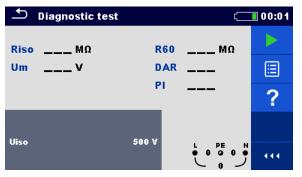


Figure 7.11: Diagnostic test menu

Measurement parameters / limits

Uiso Nominal test voltage [500 V, 1000 V, 2500 V]

Connection diagrams

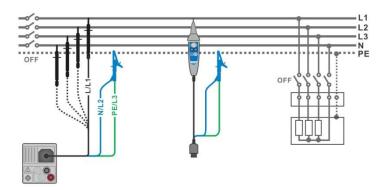


Figure 7.12: Connection of 3-wire test lead and Tip commander ($U_N \le 1 \text{ kV}$)

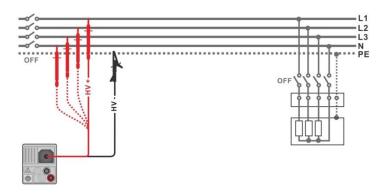


Figure 7.13: Connection of 2.5 kV test lead ($U_N = 2.5 \text{ kV}$)

Measurement procedure

- Enter the **Diagnostic test** function.
- Set test parameters / limits.
- Disconnect tested installation from mains supply and discharge installation as required.
- Connect test cable to the instrument.
 - Connect test leads to object under test (see *Figure 7.12* and *Figure 7.13*). Different test cable must be used for testing with nominal test voltage U_N ≤ 1000 V and U_N= 2500 V. Also, different test terminals are used. The standard 3-wire test lead, Schuko test cable or Plug / Tip commanders can be used for the insulation test with nominal test voltages ≤ 1000 V. For the 2500 V insulation test the two wire 2.5 kV test lead should be used.
 - Start the measurement. Internal timer begins to increment. When internal timer reaches 1 min R60 and DAR factor are displayed and short beep is generated. Measurement can be interrupted at any time.
- When internal timer reaches 10 min also PI factor is displayed and measurement is completed. Wait until object under test is fully discharged.
- After the measurement is finished wait until tested item is fully discharged.
- Save results (optional).

🖆 Diagnostic test	¢ 	13:15	Diagnostic test	۲	10:49
<mark>Riso100.8</mark> MΩ Um 525∨	R60 111.2 мΩ DAR 1.00 PI 0.91		Riso 99.8 MΩ Um 2625 V	R60 109.6 MΩ Dar 1.00 Pi 0.91	
Time: 09:59			Time: 10:00		
Uiso		F	Uiso 2		111

Figure 7.14: Examples of Diagnostic test result

Measurement results / sub-results

Riso Insulation resistance		
Um Actual test voltage		
R60 Resistance after 60 second		
DAR	DAR Dielectric absorption ratio	
PI	Polarization index	

7.4 Varistor test

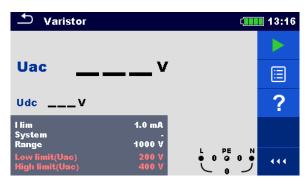


Figure 7.15: Varistor test main menu

Measurement parameters / limits

l lim	Current limit [1.0 mA]		
System	System [-, TT, TN, TN-C, TN-S]		
Range	Test voltage range [1000 V, 2500 V*]		
Low limit (Uac)	Low breakdown limit value @ 1000 V range [Off, 50 V 620 V]		
	@ 2500 V range [Off, 50 V 1550 V]*		
High limit (Uac)	High breakdown limit value @ 1000 V range [Off, 50 V 620 V]		
righ milit (Uac)	@ 2500 V range [Off, 50 V 1550 V]*		

* For MI 3152H only

Test circuit for Varistor test

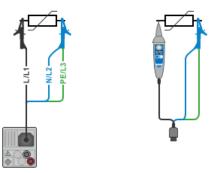


Figure 7.16: Connection of 3-wire test lead ($U_N \le 1 \text{ kV}$)

Measurement procedure

- Enter the Varistor test function.
- Set test parameters / limits.
- Connect test cable to the instrument.
 - Connect test leads to object under test (see *Figure 7.16* and *Figure 7.17*). Different test cable must be used for testing with MI 3152 where end voltage is 1000 V and MI 3152H where end voltage is 2500 V. Also, different test terminals are used. The standard 3-wire test lead, Plug test cable or Plug / Tip commander can be used for the Varistor test with end voltage 1000 V. For the 2500 V Varistor test the two wire 2.5 kV test lead should be used.
 - Start the measurement.

A voltage ramp starts from 50 V and rises with a slope of 100 V/s (Range parameter set to 1000 V) or 350 V/s (Range parameter set to 2500 V). The measurement ends when the defined end voltage is reached or if the test current exceeds the value of 1 mA.

- After the measurement is finished wait until tested item is fully discharged.
- Save results (optional).

Figure 7.18: Examples of Varistor test result

Measurement results / sub-results

UacCalculated a.c. breakdown voltageUdcBreakdown voltage

Meaning of the Uac voltage

Protection devices intended for a.c. network are usually dimensioned approx. 15 % above peak value of the nominal mains voltage. The relation between Udc and Uac is following:

$$Uac \approx \frac{Udc}{1.15 \times \sqrt{2}}$$

Uac voltage may be directly compared with the voltage declared on tested protection device.

7.5 R low – Resistance of earth connection and equipotential bonding

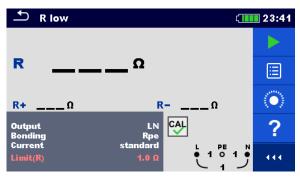


Figure 7.19: R low measurement menu

Measurement parameters / limits

Output ¹⁾	[LN, LPE]	
Bonding	[Rpe, Local]	
Current	[standard, ramp]	
Limit(R)	Max. resistance [Off, Custom, 0.05 Ω 20.0 Ω]	
¹⁾ R lov	v measurement depends on Output parameter setting, see table belo	ow.

Output	Test terminals
LN	L and N
LPE	L and PE

Connection diagram

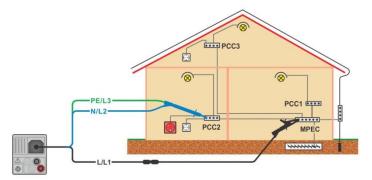


Figure 7.20: Connection of 3-wire test lead plus optional Extension lead

Measurement procedure

- Enter the **R low** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
 - Compensate the test leads resistance, if necessary, see section 7.6.1 Compensation of test leads resistance.
- Disconnect tested installation from mains supply and discharge insulation as required.
- Connect test leads, see *Figure 7.20*.
- Start the measurement.
- Save results (optional).

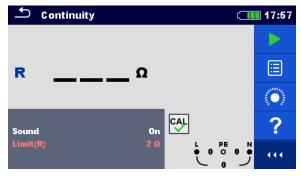
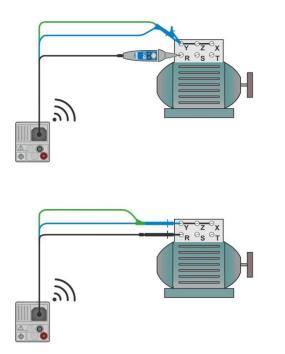


Figure 7.21: Examples of R low measurement result

Measurement results / sub-results

- R Resistance
- **R+** Result at positive test polarity
- **R-** Result at negative test polarity

7.6 Continuity – Continuous resistance measurement with low current



Measurement parameters / limits

Sound	[On*, Off]
Limit(R)	Max. resistance [Off, Custom, 0.1 Ω 20.0 Ω]
*Instrumen	t sounds if resistance is lower than the set limit value.

Connection diagrams

Measurement procedure

- Enter the **Continuity** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Compensate the test leads resistance, if necessary, see section 7.6.1 Compensation of test leads resistance.
 - Disconnect device under test from mains supply and discharge it as required.

- Connect test leads to device under test, see Figure 7.23.
- Start the measurement.
- Stop the measurement.
- Save results (optional).

٩ ا	Continuity	¢ 111 21:00	▲ Continuity	ć 🎹	21:05
				×	
R	0.2Ω		R 9.7 Ω		
Sound	on CAL		Sound On	J	
Limit(R	2 11		Limit(R) 2 Ω		444

Figure 7.24: Examples of Continuity resistance measurement result

Measurement results / sub-results

R Resistance

7.6.1 Compensation of test leads resistance

This chapter describes how to compensate the test leads resistance in **R low** and **Continuity** functions. Compensation is required to eliminate the influence of test leads resistance and the internal resistances of the instrument on the measured resistance. The lead compensation is <u>therefore</u> a very important feature to obtain correct result.

Symbol is displayed if the compensation was carried out successfully.

Connections for compensating the resistance of test leads

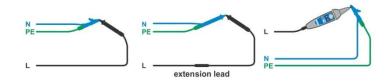


Figure 7.25: Shorted test leads

Compensation of test leads resistance procedure

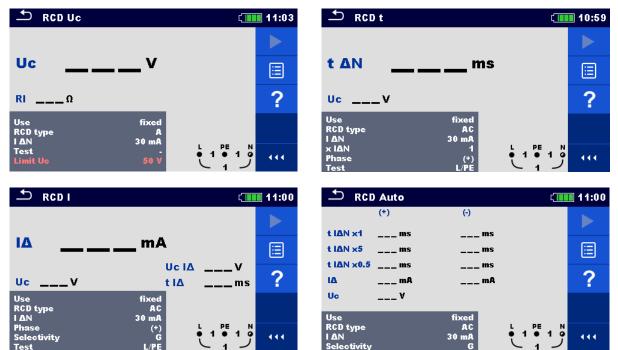
- Enter **R low** or **Continuity** function.
- Connect test cable to the instrument and short the test leads together, see *Figure* 7.25.
- Touch the key to compensate leads resistance.

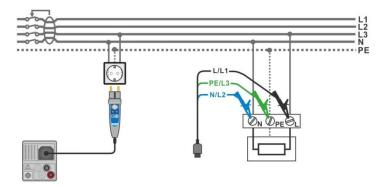
Figure 7.26: Result with old and new calibration values

7.7 Testing RCDs

Various test and measurements are required for verification of RCD(s) in RCD protected installations. Measurements are based on the EN 61557-6 standard. The following measurements and tests (sub-functions) can be performed:

- Contact voltage,
- Trip-out time,
- Trip-out current and
- RCD Auto test.




Figure 7.27: RCD menus

Test parameters / limits

ΙΔΝ	Rated RCD residual current sensitivity [10 mA, 15 mA, 30 mA, 100
	mA, 300 mA, 500 mA, 1000 mA]
Ι ΔΝ/ Ι ΔNdc	Rated RCD residual current sensitivity for special RCDs types
	[30 mA / 6 mA d.c., - / 6 mA d.c.] ¹⁾
Туре	RCD type [AC, A, F, B*, B+*, EV RCD ¹), MI RCD ¹), EV RCM ¹)]
Use	RCD / PRCD selection [fixed, PRCD, PRCD-2p, PRCD-3p, PRCD-S,
	PRCD-S+, PRCD-K, other]
Selectivity	Characteristic [G, S]
x ΙΔΝ	Multiplication factor for test current [0.5, 1, 2, 5]
x l∆N d.c.	Multiplication factor for d.c. test current [0.5, 1, 10, 33.33, 50] ¹⁾
Phase	Starting polarity [(+), (-), (+,-)]
Limit Uc	Conventional touch voltage limit [Custom, 12 V, 25 V, 50 V]
Test	Test current shape [a.c., d.c.] ^{1), 3)}
Test	Test [-, L/PE, L1/PE, L2/PE, L3/PE] ²⁾
Sensitivity	Sensitivity [standard, lpe monitoring] ⁴⁾
RCD standard	Refer to chapter 4.6.5.2 RCD standard for more information.
EV RCD/RCM Standard	Standard for EV RCD, EV RCM [IEC 62752, IEC 62955]
Earthing system	Refer to chapter 4.6.5 Settings for more information.
* Model MI 3152 only.	<u>.</u>

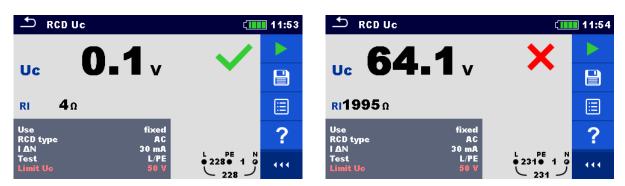
- ¹⁾ Parameter is available only when parameter Use is set to other (for Electrical Vehicle (EV) RCDs/RCMs and Mobile installations (MI) RCDs).
- ²⁾ With Plug test cable or Plug commander RCD tests are measured in the same way regardless of the setting. The parameter is meant for documentation.
- ³⁾ Parameter is available only when RCD I or RCD t test is selected and parameter Use is set to other.
- ⁴⁾ Parameter is available only when parameter 'Use' is set to PRCD, PRCD-3p, PRCD-S+ or PRCD-K.

Connection diagram

7.7.1 RCD Uc – Contact voltage

Test procedure

•	Enter the RCD Uc function.
•	Set test parameters / limits.
•	Connect test cable to the instrument.
•	Connect test leads or Plug commander to the object under test, see <i>Figure 7.28</i> .


- Start the measurement.
- Save results (optional).

The contact voltage result relates to the rated nominal residual current of the RCD and is multiplied by an appropriate factor (depending on RCD type and type of test current). The 1.05 factor is applied to avoid negative tolerance of result. See *Table 7.1* for detailed contact voltage calculation factors.

RCD type		Contact voltage Uc proportional to		Notes
AC, EV, MI (a.c. part)	G	1.05×I∆N	any	
AC	S	$2 \times 1.05 \times I_{\Delta N}$		
A, F	G	1.4×1.05×I _{∆N}	≥ 30 mA	All models
A, F	S	$2 \times 1.4 \times 1.05 \times I_{\Delta N}$		All models
A, F	G	$2 \times 1.05 \times I_{\Delta N}$	< 30 mA	
A, F	S	$2 \times 2 \times 1.05 \times I_{\Delta N}$		
B, B+	G	2×1.05×I _{∆N}	any	Model MI 3152 only
B, B+	S	$2 \times 2 \times 1.05 \times I_{\Delta N}$		

Table 7.1: Relation between Uc and I_{⊿N}

Fault Loop resistance is indicative and calculated from Uc result (without additional proportional factors) according to: $R_L = \frac{U_C}{I_{AM}}$.

Test result / sub-results

Uc	Contact voltage
RI	Calculated fault loop resistance

7.7.2 RCD t – Trip-out time

Test procedure

- Enter the **RCD t** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see *Figure 7.28*.
- Start the measurement.
- Save results (optional).

Figure 7.30: Examples of Trip-out time measurement result

Test results / sub-results

$t \Delta N$	Trip-out time
Uc	Contact voltage for rated $I_{\Delta N}$

7.7.3 RCD I – Trip-out current

The instrument increases the test current in small steps through appropriate range as follows:

BCD turne	Slope range		Waveform	Notes	
RCD type	Start value	End value	wavelorm	Notes	
AC	$0.2 \times I_{\Delta N}$	$1.1 \times I_{\Delta N}$	Sine		
IEC 62752:	0.2×I∆N	1.0×I _{4N}	Sine		
EV RCD, EV RCM, MI RCD (a.c. part)	0.2×1∆N	T.U×IΔN	Sine		
IEC 62955:	0.2×I _{ΔN}	1.0×I _{4N}	Sine		
EV RCD, EV RCM, MI RCD (a.c. part)	0.2×1∆N	T.U×IAN	Sine	All	
A, F (I _{∆N} ≥ 30 mA)	$0.2 \times I_{\Delta N}$	$1.5 \times I_{\Delta N}$	Pulsed	models	
A, F (I _{∆N} = 10 mA)	0.2×I∆N	2.2×I∆N	Fuiseu	models	
IEC 62752:	1.2 mA	6.0 mA	DC		
EV RCD, EV RCM, MI RCD (d.c. part)	1.2 MA	0.0 MA	DC		
IEC 62955:	1.2 mA	6.0 mA	DC		
EV RCD, EV RCM, MI RCD (d.c. part)	1.2 MA	0.0 MA	DC		
B, B+	0.2×I∆N	2.2×I _{4N}	DC	Model MI	
	U.Z×IAN	Z.Z×IAN		3152 only	

Table 7.2: Relationship between RCD type, slope range and test current

Maximum test current is I_{Δ} (trip-out current) or end value in case the RCD didn't trip-out.

Test procedure

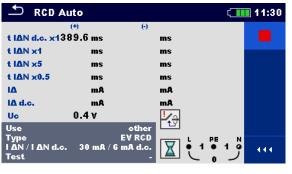
- Enter the RCD I function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see Figure 7.28.
- Start the measurement.
- Save results (optional).

Figure 7.31: Examples of Trip-out current measurement result

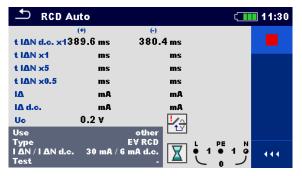
Test results / sub-results

IΔ	Trip-out current	
Uc	Contact voltage	
Uc I∆	Contact voltage at trip-out current I Δ or no value if the RCD didn't trip	
t I∆	Trip-out time at trip-out current I∆	

7.8 RCD Auto – RCD Auto test


RCD Auto test function performs a complete RCD test (trip-out time at different residual currents, trip-out current and contact voltage) in one set of automatic tests, guided by the instrument.

RCD Auto test procedure


RC	D Auto test steps	Notes
•	Enter the RCD Auto function.	
•	Set test parameters / limits.	
•	Connect test cable to the instrument.	
•	Connect test leads or Plug commander to the object	
	under test, see <i>Figure 7.28</i>	
•	Start the measurement.	Start of test
	Test with $I_{\Delta N}$ d.c., (+) positive polarity (step 1) ¹ .	RCD should trip-out
•	Re-activate RCD.	
	Test with $I_{\Delta N}$ d.c., (-) negative polarity (step 2) ¹⁾ .	RCD should trip-out
•	Re-activate RCD.	
	Test with $I_{\Delta N}$, (+) positive polarity (step 3) ²⁾ .	RCD should trip-out RCD should not trip-out during non-operating time for a.c residual current (IEC 62955).
	Re-activate RCD if required.	· · · · · ·
	Test with $I_{\Delta N}$, (-) negative polarity (step 4) ²⁾ .	RCD should trip-out RCD should not trip-out during non-operating time for a.c residual current (IEC 62955).
	Re-activate RCD if required.	
	Test with $5 \times I_{\Delta N}$, (+) positive polarity (step 5) ²⁾ .	RCD should trip-out
•	Re-activate RCD.	
	Test with $5 \times I_{\Delta N}$, (-) negative polarity (step 6) ²⁾ .	RCD should trip-out
•	Re-activate RCD.	
	Test with $\frac{1}{2} \times I_{\Delta N}$, (+) positive polarity (step 7) ²⁾ .	RCD should not trip-out
	Test with $\frac{1}{2} \times I_{\Delta N}$, (-) negative polarity (step 8) ²).	RCD should not trip-out
	Trip-out current test, (+) positive polarity (step 9) ²⁾ .	RCD should trip-out
•	Re-activate RCD.	·
	Trip-out current test, (-) negative polarity (step 10) ²⁾ .	RCD should trip-out
•	Re-activate RCD ¹⁾ .	<u>_</u>
	Trip-out current test for d.c. part, (+) polarity (step 11).	RCD should trip-out
•	Re-activate RCD ¹⁾ .	
	Trip-out current test for d.c. part, (-) polarity (step 12).	RCD should trip-out
	Re-activate RCD.	
	Save results (optional).	End of test

¹⁾ Steps 1, 2 11 and 12 are performed only when parameter Use is set to 'other' and parameter Type is set to 'EV RCD', 'EV RCM' or 'MI RCD'. Trip-out times are measured according to IEC 62752 or IEC 62955.

²⁾ When parameter Use is set to 'other' and parameter Type is set to 'EV RCD', 'EV RCD' or 'MI RCD', trip-out times or non-operating times for a.c. residual current are measured according to IEC 62752 or IEC 62955.

🛨 RCD AL	ito		(II	11:30
	(+)	Θ		
t IAN d.c. x138	9.6 ms	380.4 ms		
t ΙΔΝ x1 13	6.6 ms	ms		
t IAN x5	ms	ms		
t IΔN x0.5	ms	ms		
IΔ	mA	mA		
IΔ d.c.	mA	mA		
Uc	0.2 v			
Use		other		
Type ΙΔΝ/ΙΔΝd.c.	30 mA / 6 i		¤E N ● 1 0	
Test	50 ma / 0		ĴĴ	

Θ

EV RCD

Step 5

380.4 ms

130.8 ms

ms

ms

mA

mA

!∕⊋

X

(11:30

N 0

444

1

∽

t IAN x1

t IΔN x5

IΔ

Uc

Use

Test

IΔ d.c.

t ΙΔΝ x0.5

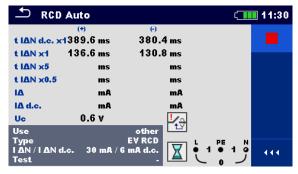
RCD Auto

t IAN d.c. x1389.6 ms

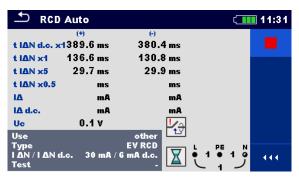
(+)

136.6 ms

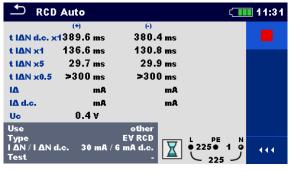
29.7 ms

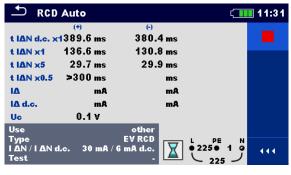

0.8 v

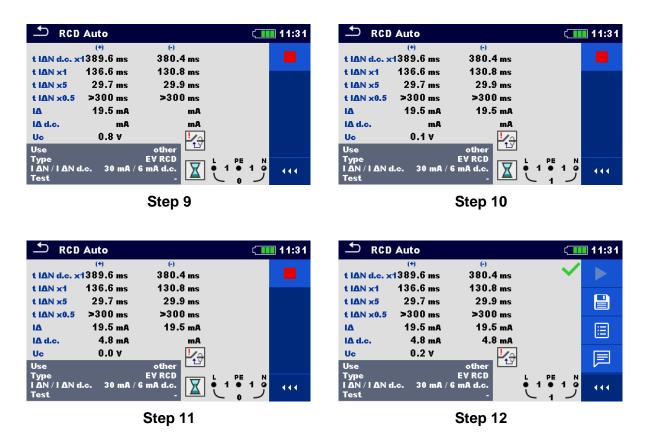
IAN / IAN d.c. 30 mA / 6 mA d.c.


ms

mA


mA




Step 6

Step 8

Figure 7.32: Example of individual steps in RCD Auto test, example on testing EV RCD

Test results / sub-results		
t I∆N d.c. x1, (+) ¹⁾	Step 1 trip-out time ($I_{\Delta}=I_{\Delta N \text{ d.c.}}$, (+) positive polarity)	
t I∆N d.c. x1, (-) ¹⁾	Step 2 trip-out time ($I_{\Delta} = I_{\Delta N \text{ d.c.}}$, (-) negative polarity)	
t I∆N x1, (+)	Step 3 trip-out time ($I_{\Delta}=I_{\Delta N}$, (+) positive polarity) Non-operating time for a.c. current (IEC 62955).	
t I∆N x1, (-)	Step 4 trip-out time ($I_{\Delta}=I_{\Delta N}$, (-) negative polarity) Non-operating time for a.c. current (IEC 62955).	
t I∆N x5, (+)	Step 5 trip-out time (I_{Δ} =5× $I_{\Delta N}$, (+) positive polarity)	
t I∆N x5, (-)	Step 6 trip-out time (I_{Δ} =5× $I_{\Delta N}$, (-) negative polarity)	
t I∆N x0.5, (+)	Step 7 trip-out time ($I_{\Delta}=\frac{1}{2} \times I_{\Delta N}$, (+) positive polarity)	
t I∆N x0.5, (-)	Step 8 trip-out time ($I_{\Delta}=\frac{1}{2} \times I_{\Delta N}$, (-) negative polarity)	
I∆ (+)	Step 9 trip-out current ((+) positive polarity)	
I∆ (-)	Step 10 trip-out current ((-) negative polarity)	
I∆ d.c. (+) ¹⁾	Step 11 trip-out current ((+) positive polarity)	
I∆ d.c, (-) ¹⁾	Step 12 trip-out current ((-) negative polarity)	

Contact voltage for rated $I_{\Delta N}$

Uc

1) Result is displayed only when parameter Use is set to 'other' and parameter Type to 'EV RCD', 'EV RCM' or 'MI RCD'.

7.9 Z loop – Fault loop impedance and prospective fault current

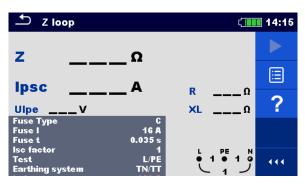


Figure 7.33: Z loop menu

Measurement parameters / limits

Fuse Type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
Isc factor	Isc factor [Custom, 0.20 3.00]
Test	Selection of test [-, L/PE, L1/PE, L2/PE, L3/PE] ¹⁾
Earthing system	Refer to chapter 4.6.5 Settings for more information.
la(lpsc)	Minimum fault current for selected fuse or custom value
¹⁾ With Plug te	est cable or Plug commander Z loop is measured in the same way regardless
of the settin	g. The parameter is meant for documentation.

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

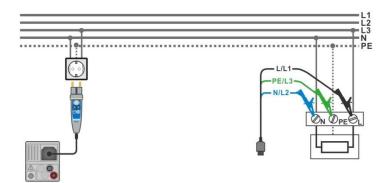


Figure 7.34: Connection of Plug commander and 3-wire test lead

Measurement procedure

- Enter the **Z loop** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- · Connect test leads or Plug commander to the object under test, see Figure 7.34.
- Start the measurement.
- Save results (optional).

Figure 7.35: Examples of Loop impedance measurement result

Measurement results / sub-results

Z	Loop impedance
lpsc	Prospective fault current
Ulpe	Voltage L-PE
R	Resistance of loop impedance
XL	Reactance of loop impedance

Prospective fault current I_{PSC} is calculated from measured impedance as follows:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

where:

Un..... Nominal U_{L-PE} voltage (see table below),

 k_{sc} Correction factor (Isc factor) for I_{PSC} . Refer to chapter **4.6.5 Settings** for more information.

Un	Input voltage range (L-PE)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-PE}} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{L-PE} \le 266 \text{ V})$

Table 7.3: Relation between Input voltage – U_{L-PE} and nominal voltage – U_n used forcalculation

7.10 Zs rcd – Fault loop impedance and prospective fault current in system with RCD

Zs rcd measurement prevents trip-out of the RCD in systems with the RCD.

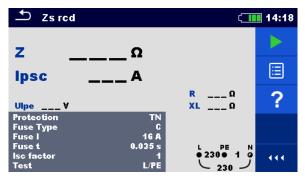


Figure 7.36: Zs rcd menu

Measurement parameters / limits

Protection	Protection type [TN, TTrcd]	
Fuse Type ¹⁾	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]	
Fuse I ¹⁾	Rated current of selected fuse	
Fuse t ¹⁾	Maximum breaking time of selected fuse	
Isc factor	Isc factor [Custom, 0.20 3.00]	
la(lpsc) ¹⁾	Minimum fault current for selected fuse or custom value	
$I \Delta N^{2)}$	Rated RCD residual current sensitivity [10 mA, 15 mA, 30 mA, 100 mA, 300	
	mA, 500 mA, 1000 mA]	
RCD type ²⁾	RCD type [AC, A, F, B ⁴ , B+ ⁴]	
Selectivity ²⁾	Characteristic [G, S]	
Test	Selection of test [-, L-PE, L1-PE, L2. PE, L3-PE] 3)	
l test	Test current [Standard, Low]	
Limit Uc ²⁾	Contact voltage limit [Custom, 12 V, 25 V, 50 V] ²⁾	
¹⁾ Parame	¹⁾ Parameter or limit is considered if Protection is set to TN	
²⁾ Parameter or limit is considered if Protection is set to TTrcd		

- ³⁾ With Plug test cable or Plug commander Zs rcd is measured in the same way regardless of the setting. The parameter is meant for documentation.
- ⁴⁾ Model MI 3152 only

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

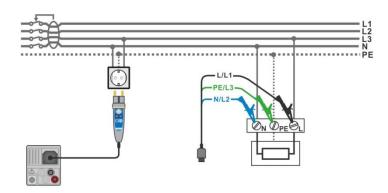


Figure 7.37: Connection of Plug commander and 3-wire test lead

Measurement procedure

- Enter the **Zs rcd** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
 - Connect test leads or Plug commander to the object under test, see Figure 7.37.
- Start the measurement.
 - Save results (optional).

Figure 7.38: Examples of Zs rcd measurement result

Measurement results / sub-results

Z	Loop impedance	
lpsc	Prospective fault current	
Ulpe	Voltage L-PE	
R	Resistance of loop impedance	
XL	Reactance of loop impedance	
Uc ¹⁾	Contact voltage	

¹⁾ Result is presented only if Protection is set to TTrcd

Prospective fault current IPSC is calculated from measured impedance as follows:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

where:

Un...... Nominal UL-PE voltage (see table below),

k_{sc} Correction factor (Isc factor) for I_{PSC} Refer to chapter **4.6.5 Settings** for more information.

Un Input voltage range (L-P		
110 V	(93 V \leq U _{L-PE} \leq 134 V)	
230 V	$(185 \text{ V} \le \text{U}_{\text{L-PE}} \le 266 \text{ V})$	

Table 7.4: Relation between Input voltage – U_{L-PE} and nominal voltage – U_n used forcalculation

7.11 Z loop m Ω – High precision fault loop impedance and prospective fault current

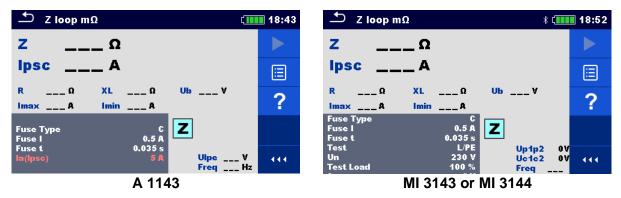
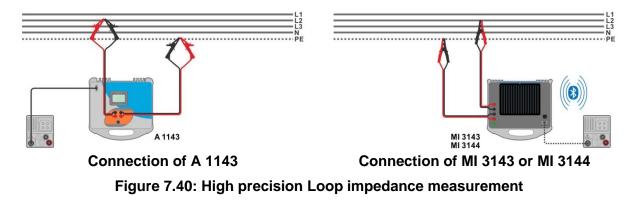


Figure 7.39: Z loop m Ω menu


Measurement parameters / limits

Fuse Type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]	
Fuse I	Rated current of selected fuse	
Fuse t	Maximum breaking time of selected fuse	
la(lpsc)	Minimum fault current for selected fuse or custom value	
Test	Test [-, L/PE, L1/PE, L2/PE, L3/PE] ¹⁾	
Un ²⁾	Nominal voltage [Custom, 110 V, 115 V, 127 V, 220 V, 230 V, 240 V, 290 V, 400 V, 460 V]	
Tolerance ²⁾	MI 3143 & MI 3144: Nominal voltage tolerance [6 %, 10 %]	
Test Load ²⁾	MI 3143: Test Load [33.3 %, 66.6 %, 100 %]	
	MI 3144: Test Load [16.6 %, 33.3 %, 50.0 %, 66.6 %, 83.3 %, 100 %]	
Average ²⁾	MI 3143 & MI 3144: Average [Off, 2, 4, 6]	
Isc factor ²⁾	Isc factor [Custom, 0.2 3]	
Ub ²⁾	Enable Ub measurement [On, Off]	
¹⁾ The measurement doesn't depend on the setting. The parameter is meant for documentation.		

²⁾ Parameter is available only if MI 3143 or MI 3144 Euro Z instrument is selected.

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

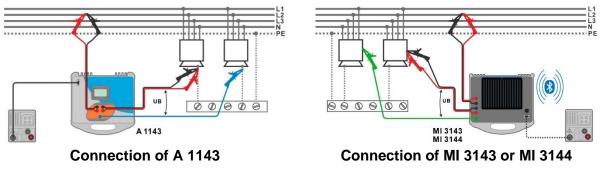


Figure 7.41: Contact voltage measurement

Measurement procedure

- Connect MI 3152(H) instrument with A 1143, MI 3143 or MI 3144 Euro Z adapter / instrument via serial RS232 or pair them using Bluetooth communication. See chapter 4.6.5.1 Selection and configuration of measuring adapters.
- Enter the **Z** loop $m\Omega$ function.
- Set test parameters / limits.
- Check Bluetooth communication active sign if MI 3143 or MI 3144 Euro Z instrument is connected to MI 3152(H) instrument via Bluetooth communication.
- Connect test leads to A 1143, MI 3143 or MI 3144 Euro Z adapter / instrument.
- Connect test leads to the object under test, see Figure 7.40 and Figure 7.41.

Start the measurement using or button.
Save results (optional).

18:45	Loop mΩ *	22:10
	z 320 mΩ	
	R 318 mΩ XL 34.3 mΩ Ub 0.3 V Imax 791 A Imin 433 A	
?	Fuse Type C Fuse I 16 A Fuse t 0.035 s	
444	Un 230 V Uc1c2 22	48
	► 	Z 320 mΩ Ipsc 720 A R 318 mΩ XL 34.3 mΩ Ub 0.3 V Imax 791 A Imin 433 A Fuse t 0.035 s Z Test L/PE Up 1p2 22 Un 230 V Up 1p2 22

Result screen using A 1143

Result screen using MI 3143 or MI 3144

Figure 7.42: Examples of high precision Loop impedance measurement result

Measurement results / sub-results

Z	Loop impedance	
lpsc	Standard prospective fault current	
Imax	Maximal prospective fault current	
Imin	Minimal prospective fault current	
Ub	Contact voltage at maximal prospective fault current (contact voltage measured against Probe S if used)	
R	Resistance of loop impedance	
XL	Reactance of loop impedance	

Voltage monitor using A 1143:

Ulpe	Voltage L-PE	
Freq	Frequency	
Voltage n	monitor using MI 3143 c	or MI 3144:

Up1p2	Voltage P1-P2
Uc1c2	Voltage C1-C2
Freq	Frequency

Refer to A 1143 – Euro Z 290 A, MI 3143 – Euro Z 440 V and MI 3144 – Euro Z 800 V Instruction manual for detailed information.

7.12 Z line – Line impedance and prospective shortcircuit current

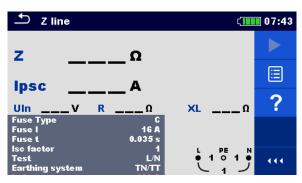


Figure 7.43: Z line measurement menu

Measurement parameters / limits

Fuse Type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]	
Fuse I	Rated current of selected fuse	
Fuse t	Maximum breaking time of selected fuse	
Isc factor	Isc factor [Custom, 0.20 3.00]	
Test ¹⁾	Test [-, L/N, L/L, L1/N, L2/N, L3/N, L1/L2, L1/L3, L2/L3]	
Earthing system	Refer to chapter 4.6.5 Settings for more information.	
la(lpsc) Minimum short-circuit current for selected fuse or custom value		
¹⁾ With Plug test cable or Plug commander Z line is measured in the same way regardless		
of the setting. The parameter is meant for documentation.		

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

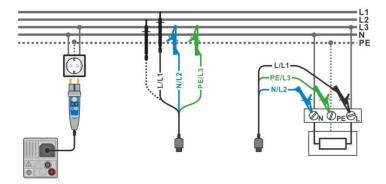


Figure 7.44: Phase-neutral or phase-phase line impedance measurement – connection of Plug commander and 3-wire test lead

Measurement procedure

- Enter the **Z line** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- · Connect test leads or Plug commander to the object under test, see Figure 7.44.
- Start the measurement.
- Save results (optional).

Figure 7.45: Examples of Line impedance measurement result

Measurement results / sub-results

_			
Z	Line impedance		
lpsc	Prospective short-circuit current		
Uln	Voltage measured between L/L1 – N/L2 test terminals		
R	Resistance of line impedance		
XL	Reactance of line impedance		
lmax3p	Maximal three-phases prospective short-circuit current		
lmin3p	Minimal three-phases prospective short-circuit current		
lmax2p	Maximal two-phases prospective short-circuit current		
lmin2p	Minimal two-phases prospective short-circuit current		
Imax	Maximal single-phase prospective short-circuit current		
Imin	Minimal single-phase prospective short-circuit current		

Prospective short circuit current I_{PSC} is calculated as follows:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

where:

 U_n Nominal U_{L-N} or U_{L-L} voltage (see table below),

k_{sc} Correction factor (Isc factor) for I_{PSC}. Refer to chapter **4.6.5 Settings** for more information.

Un	Input voltage range (L-N or L-L)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{L-N} \le 266 \text{ V})$
400 V	$(321 \text{ V} \le \text{U}_{L-L} \le 485 \text{ V})$

Table 7.5: Relation between Input voltage – $U_{L-N(L)}$ and nominal voltage – U_n used for
calculation

The prospective short-circuit currents $I_{\text{Min}},\,I_{\text{Min2p}},\,I_{\text{Min3p}}$ and $I_{\text{Max}},\,I_{\text{Max2p}},\,I_{\text{Max3p}}$ are calculated as follows:

$I_{Min} = \frac{C_{min}U_{N(L-N)}}{Z_{(L-N)hot}}$	where	$Z_{(L-N)hot} = \sqrt{(1.5 \times R_{(L-N)})^2 + X_{(L-N)}^2}$ $C_{min} = \begin{cases} 0.95; \ U_{N(L-N)} = 230 \ V \ \pm 10 \ \% \\ 1.00; \ otherwise \end{cases}$
$I_{Max} = \frac{C_{max}U_{N(L-N)}}{Z_{(L-N)}}$	where	$\begin{split} Z_{(L-N)} &= \sqrt{R_{(L-N)}^2 + X_{(L-N)}^2} \\ C_{max} &= \begin{cases} 1.05; U_{N(L-N)} = 230 V \pm 10 \% \\ 1.10; otherwise \end{cases} \end{split}$
$I_{Min2p} = \frac{C_{min}U_{N(L-L)}}{Z_{(L-L)hot}}$	where	$Z_{(L-L)hot} = \sqrt{(1.5 \times R_{(L-L)})^2 + X_{(L-L)}^2}$ $C_{min} = \begin{cases} 0.95; U_{N(L-L)} = 400 V \pm 10 \% \\ 1.00; otherwise \end{cases}$
$I_{Max2p} = \frac{C_{max}U_{N(L-L)}}{Z_{(L-L)}}$	where	$\begin{aligned} Z_{(L-L)} &= \sqrt{R_{(L-L)}^2 + X_{(L-L)}^2} \\ C_{max} &= \begin{cases} 1.05; U_{N(L-L)} = 400 \ V \ \pm 10 \ \% \\ 1.10; \ otherwise \end{cases} \end{aligned}$
$I_{Min3p} = \frac{C_{min} \times U_{N(L-L)}}{\sqrt{3}} \frac{2}{Z_{(L-L)hot}}$	where	$Z_{(L-L)hot} = \sqrt{(1.5 \times R_{(L-L)})^2 + X_{(L-L)}^2}$ $C_{min} = \begin{cases} 0.95; \ U_{N(L-L)} = 400 \ V \ \pm 10 \ \% \\ 1.00; \ otherwise \end{cases}$
$I_{Max3p} = \frac{C_{max} \times U_{N(L-L)}}{\sqrt{3}} \frac{2}{Z_{(L-L)}}$	where	$Z_{(L-L)} = \sqrt{R_{(L-L)}^2 + X_{(L-L)}^2}$ $C_{max} = \begin{cases} 1.05; U_{N(L-L)} = 400 V \pm 10 \% \\ 1.10; otherwise \end{cases}$

7.13 Z line $m\Omega$ – High precision line impedance and prospective short-circuit current

Figure 7.46: Z line $m\Omega$ menu

Measurement parameters / limits

Fuse Type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]				
Fuse I	Rated current of selected fuse				
Fuse t	Maximum breaking time of selected fuse				
la(lpsc)	Minimum short circuit current for selected fuse or custom value				
Test ¹⁾	Test [-, L/N, L/L, L1/N, L2/N, L3/N, L1/L2, L1/L3, L2/L3]				
Un ²⁾	Test=[-, L/N, L1/N, L2/N, L3/N]:				
	Nominal voltage [Custom, 110 V, 115 V, 127 V, 220 V, 230 V, 240 V, 290 V,				
	400 V, 460 V]				
	Test=[L/L, L1/L2, L1/L3, L2/L3]:				
	Nominal voltage [Custom, 190 V, 200 V, 220 V, 380 V, 400 V, 415 V, 500 V,				
	690 V, 800 V]				
Tolerance ²⁾	MI 3143 & MI 3144: Nominal voltage tolerance [6 %, 10 %]				
Test Load ²⁾	MI 3143: Test Load [33.3 %, 66.6 %, 100 %]				
	MI 3144: Test Load [16.6 %, 33.3 %, 50.0 %, 66.6 %, 83.3 %, 100 %]				
Average ²⁾	MI 3143 & MI 3144: Average [Off, 2, 4, 6]				
Isc factor ²⁾	Isc factor [Custom, 0.20 3.00]				
	easuring results (for phase – neutral or phase – phase line) are set according to				

the setting. The parameter is meant for documentation.
 Parameter is available only if MI 3143 or MI 3144 Euro Z instrument is selected.

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

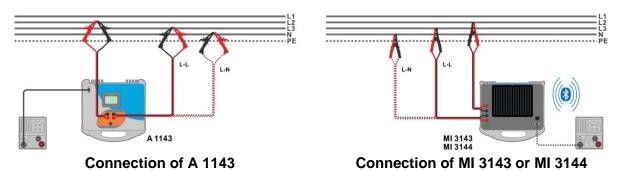


Figure 7.47: Phase-neutral or phase-phase high precision Line impedance measurement

Measurement procedure

- Connect MI 3152(H) instrument with A 1143, MI 3143 or MI 3144 Euro Z adapter / instrument via serial RS232 or pair them using Bluetooth communication. See chapter 4.6.5.1 Selection and configuration of measuring adapters.
- Enter the **Z** line $m\Omega$ function.
- Set test parameters / limits.
 - Check Bluetooth communication active sign if MI 3143 or MI 3144 Euro Z instrument is connected to MI 3152(H) instrument via Bluetooth communication.
- Connect test leads to A 1143, MI 3143 or MI 3144 Euro Z adapter / instrument.
- Connect test leads to the object under test, see *Figure 7.47*.
 - Start the measurement using or button.
 Save results (optional).

Result screens using MI 3143 or MI 3144

Figure 7.48: Examples of high precision Line impedance measurement result

Measurement results / sub-results

Z	Line impedance
lpsc	Standard prospective short-circuit current
Imax	Maximal prospective short-circuit current
Imin	Minimal prospective short-circuit current
lmax2p	Maximal two-phases prospective short-circuit current
Imin2p	Minimal two-phases prospective short-circuit current
Imax3p	Maximal three-phases prospective short-circuit current
lmin3p	Minimal three-phases prospective short-circuit current
R	Resistance of line impedance
XL	Reactance of line impedance

Voltage monitor using A 1143:UInVoltage L-N or L-LFreqFrequencyVoltage monitor using MI 3143 or MI 3144:

Up1p2	Voltage P1-P2	
Uc1c2	Voltage C1-C2	
Freq	Frequency	

Refer to A 1143 – Euro Z 290 A, MI 3143 – Euro Z 440 V and MI 3144 – Euro Z 800 V Instruction manual for detailed information.

7.14 High Current (MI 3143 and MI 3144)

🗂 High Current 🕴 🚛	22:14
ΔRΩ	
RselΩ	∷
Itest A U V AU V Ic A f Hz AU% %	?
Test Load 100 % Clamp Type A 1227 Clamp Range 300 A	
Average Off Up1p2 0V Limit(AR) Off Uc1c2 0V	

Figure 7.49: High Current menu

Measurement parameters / limits

Test Load MI 3143: Test load [33.3 %, 66.6 %, 100 %]				
	MI 3144: Test load [16.6 %, 33.3 %, 50.0 %, 66.6 %, 83.3 %, 100 %]			
Clamp Type ¹⁾	Clamp type [A 1227, A 1281, A 1609]			
Clamp Range ¹⁾	Range @ A 1227, A 1609 [30 A, 300 A, 3000 A]			
	Range @ A 1281 [0.5 A, 5 A, 100 A, 1000 A]			
Average	Average [Off, 2, 4, 6]			
Limit (AR)	Limit [Off, Custom, 0.01 Ω 19 Ω]			

¹⁾ Measurement with current clamps is supported by **MI 3144 – Euro Z 800 V** instrument only.

Connection diagram

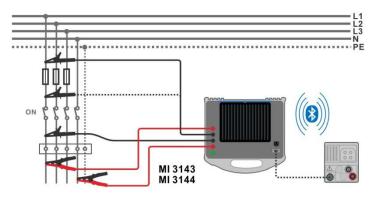


Figure 7.50: High Current resistance measurement

Measurement procedure

- Connect MI 3152(H) instrument with MI 3143 or MI 3144 Euro Z adapter / instrument via serial RS232 or pair them using Bluetooth communication. See chapter 4.6.5.1 Selection and configuration of measuring adapters.
- Enter the **High Current** function.
- Set test parameters / limits.
 - Check Bluetooth communication active sign if MI 3143 or MI 3144 Euro Z instrument is connected to MI 3152(H) instrument via Bluetooth communication.
 - Connect test leads to MI 3143 or MI 3144 Euro Z instrument.

•

- Connect test leads to the object under test. See Figure 7.50. ۲
- Refer to MI 3143 Euro Z 440 V or MI 3144 Euro Z 800 V Instruction manual for ۲ detailed information.

Figure 7.51: Example of High Current measurement result

Measurement results / sub-results

ΔR	Resistance
Rsel ¹⁾	Resistance (calculated from Clamp current)
Itest	Test current
lc ¹⁾	Clamp current
U	Voltage
f	Frequency
ΔU	Voltage dip
∆U%	Voltage dip in percentage [ΔU (%) = (ΔU / U_unloaded) x 100 %]

1) Measurement with current clamps is supported by MI 3144 - Euro Z 800 V instrument only.

Voltage monitor:

· onago n		
Up1p2	Voltage P1-P2	
Uc1c2	Voltage C1-C2	
Freq	Frequency	

Refer to MI 3143 - Euro Z 440 V and MI 3144 - Euro Z 800 V Instruction manual for detailed information.

7.15 Voltage Drop

The voltage drop is calculated based on the difference of line impedance at connection points (sockets) and the line impedance at the reference point (usually the impedance at the switchboard).

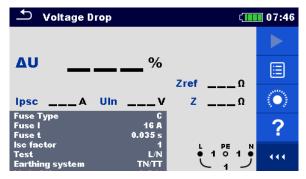
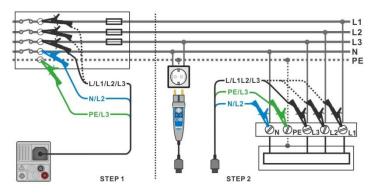
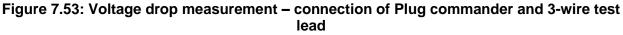


Figure 7.52: Voltage drop menu

Measurement parameters / limits


Fuse Type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
I (ΔU) ¹⁾	Rated current for ∆U measurement (custom value)
Isc factor	Isc factor [Custom, 0.20 3.00]
Test ²⁾	Test [Off, L-N, L/L, L1-N, L2-N, L3-N, L1-L2, L1-L3, L2-L3]
Earthing system	Refer to chapter 4.6.5 Settings for more information.
Limit($\Delta \overline{U}$)	Maximum voltage drop [Off, Custom, 3.0 % 9.0 %]
1) Applicable i	f Euse type is set to Off or Custom


¹⁾ Applicable if Fuse type is set to Off or Custom

²⁾ With Plug test cable or Plug commander Voltage drop is measured in the same way regardless of the setting. The parameter is meant for documentation.

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

Measurement procedure

STEP 1: Measuring the impedance Zref at origin

Enter the Voltage Drop function.
 Set test parameters / limits.
 Connect test cable to the instrument.
 Connect test leads to the origin of electrical installation, see *Figure 7.53*.
 Touch or select the icon to initiate Zref measurement.
 Press the button to measure Zref.

STEP 2: Measuring the Voltage drop

- Enter the Voltage Drop function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the tested points, see *Figure 7.53*.
- Start the measurement.
- Save results (optional).

🛨 Voltage Drop		¢	07:47
Δυ	 %		E
		Zref 0.33Ω	
lpscA Ul		ΖΩ	
Fuse Type Fuse I Fuse t	С 16 А 0.035 s		?
lsc factor Test	1 L/N	L PE N ●2270 1 ●	444
Earthing system	TN/TT	L 227 J	

Figure 7.54: Example of Zref measurement result (STEP 1)

🛨 Voltage D	rop	۲	07:48	🛨 Voltage D	rop	¢ IIII	07:49
				26	: 2	×	
ΔU	4 %	Zref 0.33 Ω		Δυ 26) - 4 %	Zref 0.33Ω	
Ipsc 427 A	Uln 225v	z 0.54 Ω	∷	Ipsc 56.2A	Uln 228 v	zrer 0.330 z 4.10Ω	
Fuse Type Fuse I Fuse t	C 16 A 0.035 s		$\langle \circ \rangle$	Fuse Type Fuse I Fuse t	C 16 A 0.035 s		$\langle \bullet \rangle$
lsc factor Test Earthing system	1 L/N TN/TT	$ \begin{array}{c} $	444	lsc factor Test Earthing system	1 L/N TN/TT		

Figure 7.55: Examples of Voltage drop measurement result (STEP 2)

Measurement results / sub-results

ΔU	Voltage drop
lpsc	Prospective short-circuit current
Un	Voltage L-N
Zref	Reference line impedance
Z	Line impedance

Voltage drop is calculated as follows:

$$\Delta U[\%] = \frac{(Z - Z_{REF}) \cdot I_N}{U_N} \cdot 100$$

where:

ΔU	Calculated Voltage drop
Zref	Impedance at reference point (at origin)
Ζ	Impedance at test point
Un	Nominal voltage
In	Rated current of selected fuse (Fuse I) or custom value I (ΔU)

Un	Input voltage range (L-N or L-L)
110 V	$(93 \text{ V} \le U_{L-N} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{\text{L-N}} \le 266 \text{ V})$
400 V	$(321 \text{ V} \le \text{U}_{L-L} \le 485 \text{ V})$

Table 7.6: Relation between Input voltage – $U_{L-N(L)}$ and nominal voltage – U_n used for
calculation

7.16 Utouch – Touch voltage (MI 3143 and MI 3144)

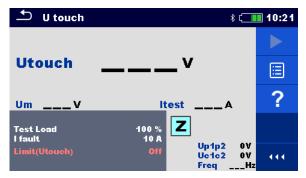


Figure 7.56: Touch voltage menu

Measurement parameters / limits

Test Load	MI 3143: Test load [33.3 %, 66.6 %, 100 %]				
	MI 3144: Test load [16.6 %, 33.3 %, 50.0 %, 66.6 %, 83.3 %, 100 %]				
I fault	Limit [Custom, 10 A 200 kA]				
Limit (Utouch)	Limit [Off, Custom, 25 V, 50 V]				

Connection diagram

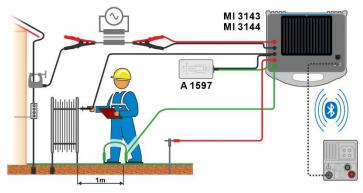


Figure 7.57: Touch voltage measurement – Connection of MI 3143 or MI 3144

Refer to *MI 3143 – Euro Z 440 V* and *MI 3144 – Euro Z 800 V Instruction manual* for detailed information.

Measurement procedure

- Connect MI 3152(H) instrument with MI 3143 or MI 3144 Euro Z instrument via serial RS232 or pair them using Bluetooth communication. See chapter 4.6.5.1 Selection and configuration of measuring adapters.
- Enter the **U** touch function.
- Set test parameters / limits.
 - Check Bluetooth communication active sign if MI 3143 or MI 3144 Euro Z instrument is connected to MI 3152(H) instrument via Bluetooth communication.
 - Connect test leads and A 1597 adapter to MI 3143 or MI 3144 Euro Z instrument.
 - Connect test leads to the object under test.
 Refer to *MI 3143 Euro Z 440 V* or *MI 3144 Euro Z 800 V Instruction manual* for detailed information.
- Start the measurement using

button.

Save results (optional).

Figure 7.58: Example of Touch voltage measurement result

Measurement results / sub-results

Utouch	Calculated touch voltage		
Um	Measured voltage drop		
Itest	Test current		

Voltage monitor:

Up1p2	Voltage P1-P2
Uc1c2	Voltage C1-C2
Freq	Frequency

Refer to *MI 3143 Euro Z 440 V* and *MI 3144 Euro Z 800 V Instruction manual* for detailed information.

7.17 Earth – Earth resistance (3-wire test)

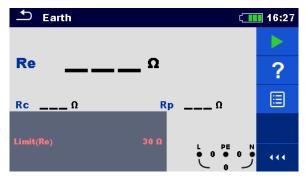
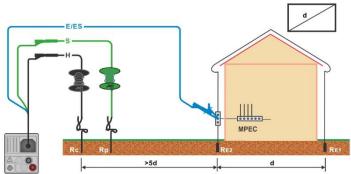



Figure 7.59: Earth menu

Measurement parameters / limits

Limit(Re) Maximum resistance [Off, Custom, $1 \Omega \dots 5 k\Omega$]

Connection diagrams

Figure 7.60: Resistance to earth, measurement of main installation earthing and lighting protection system

Measurement procedure

- Enter the **Earth** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads to the object under test, see Figure 7.60.
- Start the measurement.
- Save results (optional).

Figure 7.61: Examples of Earth resistance measurement result

Measurement results / sub-results

Re	Earth resistance		
Rc	Resistance of H (current) probe		
Rp	Resistance of S (potential) probe		

7.18 Earth 2 clamp – Contactless earthing resistance measurement (with two current clamps)

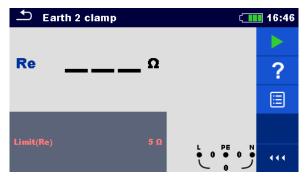


Figure 7.62: Earth 2 clamps menu

Measurement parameters / limits

Limit(Re) Maximum resistance [Off, Custom, $1 \Omega \dots 30 \Omega$]

Connection diagram

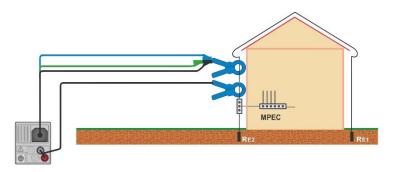


Figure 7.63: Contactless earthing resistance measurement

Measurement procedure

•	Enter the Earth 2 clamp function.
•	Set test parameters / limits.
,	Connect test cable and clamps to the instrument.
•	Clamp on object under test, see <i>Figure 7.63</i> .
•	Start the measurement.
•	Stop the measurement.
•	Save results (optional).

Figure 7.64: Examples of Contactless earthing resistance measurement result

Measurement results / sub-results

Re Earth resistance

7.19 Ro – Specific earth resistance (A 1199)

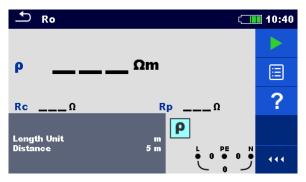


Figure 7.65: Earth Ro menu

Measurement parameters / limits

Length Unit	Length Unit [m, ft]
Distance	Distance between probes [Custom, 0.1 m 29.9 m or 1 ft 100 ft]

Connection diagram

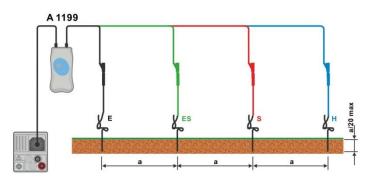


Figure 7.66: Specific earth resistance measurement

Measurement procedure

- Enter the **Ro** function.
- Set test parameters / limits.
- Connect A 1199 adapter to the instrument.
- · Connect test leads to earth probes, see Figure 7.66.
- Start the measurement.
- Save results (optional).

Measurement results / sub-results

- ρ Specific earth resistance
- **Rc** Resistance of H, E (current) probe
- **Rp** Resistance of S, ES (potential) probe

7.20 Power

Figure 7.68: Power menu

Measurement parameters / limits

Ch1 clamp type	Current clamp adapter [A1018, A1391]
Range	Range for selected current clamp adapter
	A1018 [20 A]
	A1391 [40 A, 300 A]

Connection diagram

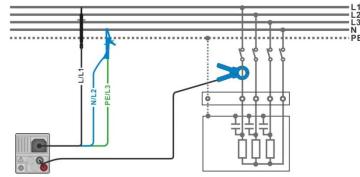


Figure 7.69: Power measurement

Measurement procedure

- Enter the **Power** function.
- Set parameters / limits.
- Connect the voltage test leads and current clamp to the instrument.
- Connect the voltage test leads and current clamp to the item to be tested (see *Figure* 7.69).
- Start the continuous measurement.
- Stop the measurement.
- Save results (optional).

Figure 7.70: Example of Power measurement result

Measurement results / sub-results

Ρ	Active power
S	Apparent power
Q	Reactive power (capacitive or inductive)
PF	Power factor (capacitive or inductive)
THDu	Voltage total harmonic distortion

7.21 Harmonics

	armoni	ics			(18:17
U: 5 U/di			THDu THDi U:h0	% A		► 12.
9 2 I:1A∕di	4 6 V	8 10	¹² l:h0			
						?
e 2 Limit(TH	4 6 Du)	8 10	12 5 %		و ہ	•••

Figure 7.71: Harmonics menu

Measurement parameters / limits

Ch1 clamp type	Current clamp adapter [A1018, A1391]
Range	Range for selected current clamp adapter
-	A1018 [20 A]
	A1391 [40 A, 300 A]
Limit(THDu)	Max. THD of voltage [Off, Custom, 3 % 10 %]

Connection diagram

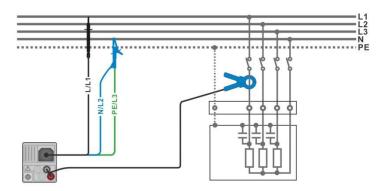


Figure 7.72: Harmonics measurement

Measurement procedure

- Enter the **Harmonics** function.
- Set parameters / limits.
- Connect voltage test leads and current clamp to the instrument.
 - Connect the voltage test leads and current clamp to the item to be tested, see *Figure* 7.72.
- Start the continuous measurement.
- Stop the measurement.
- Save results (optional).

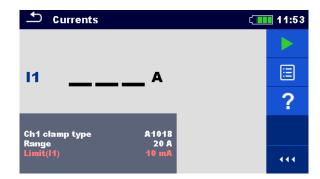
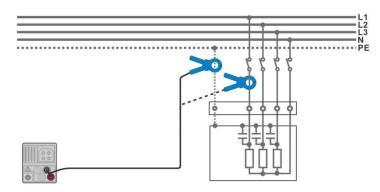
➡ Harmonics	(18:21	Harmonics	(18:15
U: 100 U/div. THDu 0.2 % THDi 0.04 A U:h1 229 V 0 2 4 6 8 10 12 I: 2 R/div L:h1 4.99 A	► ₽ ₽	THDi U:h3	37.5 % 1.87 A 30.1 ∨ 1.50 A
			× 🗉
Limit(THDu) 5 %	••• ق	Limit(THDu) 5 %	

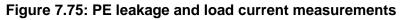
Figure 7.73: Examples of Harmonics measurement results

Measurement results / sub-results

U:h (i)	TRMS voltage of selected harmonic [h0 h11]
l:h (i)	TRMS current of selected harmonic [h0 h11]
THDu	Voltage total harmonic distortion
THDi	Current total harmonic distortion

7.22 Currents


Figure 7.74: Current menu

Measurement parameters / limits

Ch1 clamp type	Current clamp adapter [A1018, A1391]
Range	Range for selected current clamp adapter
-	A1018 [20 A]
	A1391 [40 A, 300 A]
Limit(I1)	Max. PE leakage or load current [Off, Custom, 0.1 mA 100 mA]

Connection diagram

Measurement procedure

- Enter the Currents function.
- Set parameters / limits.
- Connect the current clamp to the instrument.
- Connect the clamp to the object under test, see Figure 7.75.
- Start the continuous measurement.
- Stop the measurement.
- Save results (optional).

Figure 7.76: Examples of Current measurement result

Measurement results / sub-results

I1 PE leakage or load current

7.23 Current Clamp Meter (MI 3144)



Figure 7.77: Current Clamp Meter menu

Measurement parameters / limits

Clamp Type	Clamp type [A 1227, A 1281, A 1609]
Clamp Range	Range Clamp type A 1227, A 1609: [30 A, 300 A, 3000 A] Clamp type A 1281: [0.5 A, 5 A, 100 A, 1000 A]

Connection diagram

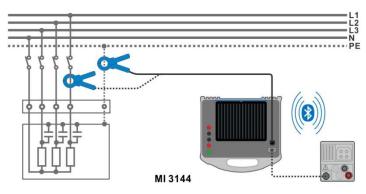


Figure 7.78: Current Clamp Meter measurement

Refer to MI 3144 Euro Z 800 V Instruction manual for detailed information.

Measurement procedure

•	Connect MI 3152(H) instrument with MI 3144 Euro Z instrument via serial RS232 or pair them using Bluetooth communication. See chapter 4.6.5.1 Selection and configuration of measuring adapters.
•	Enter the Current Clamp Meter function.
•	Set test parameters / limits.
•	Check Bluetooth communication active sign if MI 3144 Euro Z 800 V instrument is connected to MI 3152(H) instrument via Bluetooth communication.
•	Connect current clamp to MI 3144 Euro Z 800 V instrument.
•	Wrap the object under test with the measuring clamp. See <i>Figure 7.78</i> . Refer to <i>MI 3144 Euro Z 800 V Instruction manual</i> for detailed information.
•	Start the continuous measurement using or button.
•	Stop the measurement.
•	Save results (optional).

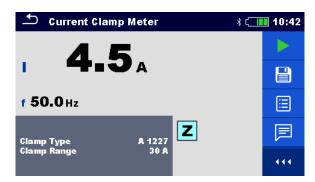


Figure 7.79: Example of Current Clamp Meter measurement result

Measurement results / sub-results

I Current

f Frequency

Refer to MI 3144 Euro Z 800 V Instruction manual for detailed information.

7.24 ISFL – First fault leakage current (MI 3152 only)

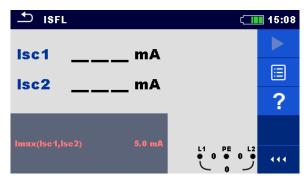


Figure 7.80: ISFL measurement menu

Measurement parameters / limits

Imax(Isc1, Isc2) Maximum first fault leakage current [Off, Custom, 3.0 mA ... 19.5 mA]

Connection diagrams

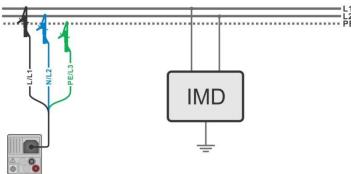


Figure 7.81: Measurement of highest First fault leakage current with 3-wire test lead

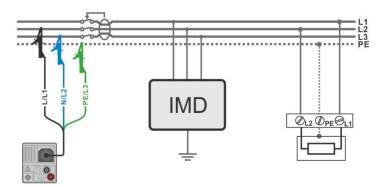


Figure 7.82: Measurement of First fault leakage current for RCD protected circuit with 3wire test lead

Measurement procedure

•	Enter the ISFL function.
•	Set test parameters / limits.
•	Connect test cable to the instrument.
•	Connect test leads to the object under test, see Figure 7.81 and Figure 7.82.
•	Start the measurement.
•	Save results (optional).

Figure 7.83: Examples of First fault leakage current measurement result

Measurement results / sub-results

lsc1	First fault leakage current at single fault between L1/PE
lsc2	First fault leakage current at single fault between L2/PE

7.25 IMD – Testing of insulation monitoring devices (MI 3152 only)

This function checks the alarm threshold of insulation monitor devices (IMD) by applying a changeable resistance between L1/PE and L2/PE terminals.

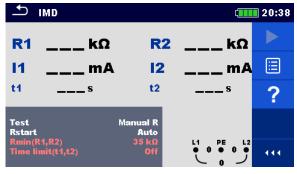


Figure 7.84: IMD test menu

Test parameters / limits

Test	Test mode [MANUAL R, MANUAL I, AUTO R, AUTO I]
Rstart	Starting insulation resistance [Auto, 5 k Ω 640 k Ω]
Istart	Starting fault current [Auto, 0.1 mA 19.9 mA]
t step	Timer (AUTO R and AUTO I test modes) [1 s 99 s]
Rmin(R1,R2)	Min. insulation resistance (R_{LIMIT}) [Off, 5 k Ω 640 k Ω],
Imax(I1,I2)	Max. fault current (ILIMIT) [Off, 0.1 mA 19.9 mA]
Time limit (t1, t2)	Max. activation / disconnection time limit [Off, 1 s]

Connection diagram

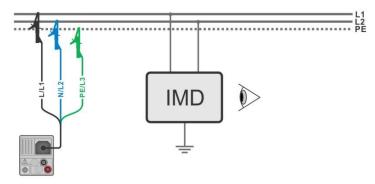
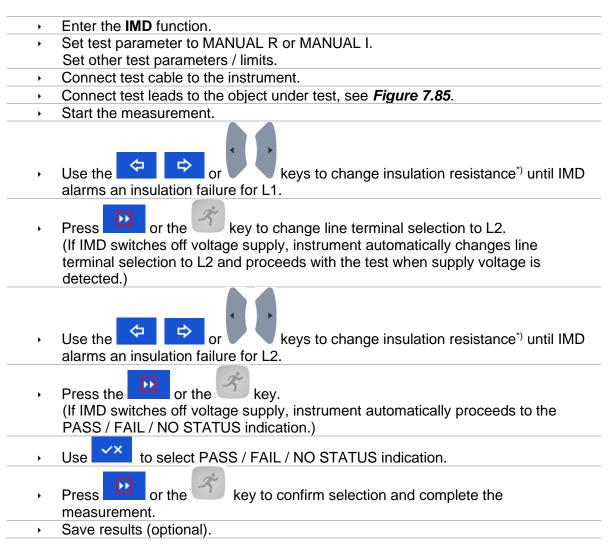



Figure 7.85: Connection with 3-wire test lead

Test procedure (MANUAL R, MANUAL I)

Test procedure (AUTO R, AUTO I)

- Enter the IMD function.
- Set test parameter to AUTO R or AUTO I.
- Set other test parameters / limits.
- Connect test cable to the instrument.
 - Connect test leads to the object under test, see *Figure 7.85*.
- Start the measurement.
 Insulation resistance between L1-PE is decreased automatically according to limit value^{*}) every time interval selected with timer. To speed up the test press the

or the

Press

keys until IMD alarms an insulation failure for L1.

key to change line terminal selection to L2.

(If IMD switches off voltage supply, instrument automatically changes line terminal selection to L2 and proceeds with the test when supply voltage is detected.)

 Insulation resistance between L2-PE is decreased automatically according to limit value^{*}) every time interval selected with timer. To speed up the test press the

	or or keys until IMD alarms an insulation failure for L2.
۶,	Press the or the key. If IMD switches off voltage supply, instrument automatically proceeds to the PASS / FAIL / NO STATUS indication.
•	Use to select PASS / FAIL / NO STATUS indication.
•	Press or the key to confirm selection and complete the measurement.
•	Save results (optional).

^{*)} Starting and ending insulation resistances are determined by selection of IMD test subfunction and test parameters. See tables below:

Sub-function	Rstart parameter	Starting insulation resistance value	Ending insulation resistance value
MANUAL R	Auto	$R_{START} \cong 1.5 \times R_{LIMIT}$	-
MANUAL K	[5 kΩ 640 kΩ]	$R_{START} = Rstart$	-
AUTO R	Auto	$R_{START} \cong 1.5 \times R_{LIMIT}$	$R_{END} \cong 0.5 \times R_{LIMIT}$
AUTOR	[5 kΩ 640 kΩ]	$R_{START} = Rstart$	$R_{END} \cong 0.5 \times R_{START}$

Table 7.7: Starting / ending insulation resistance values for MANUAL R and AUTO R sub-
functions

Sub-function	Istart parameter	Starting insulation resistance value	Ending insulation resistance value
MANUAL I		$R_{START} \cong 1.5 \times \frac{U_{L1-L2}}{I_{LIMIT}}$	-
MANUALI	[0.1 mA 19.9 mA]	$R_{START} \cong \frac{U_{L1-L2}}{I_{start}}$	-
Αυτο Ι	Auto	$R_{START} \cong 1.5 \times \frac{U_{L1-L2}}{I_{LIMIT}}$	$R_{END} \cong 0.5 \times \frac{U_{L1-L2}}{I_{LIMIT}}$
AUTOT	[0.1 mA 19.9 mA]	$R_{START} \cong \frac{U_{L1-L2}}{I_{start}}$	$R_{END} \cong 0.5 \times \frac{U_{L1-L2}}{I_{start}}$

Table 7.8: Starting / ending insulation resistance values for MANUAL I and AUTO I sub-
functions

1	IMD		۲	20:44	ı د	MD		(111	20:46
R1	55 kΩ	R2	55 kΩ		R1	65 kΩ	R2	50 κΩ	
11	2.0 mA	12	2.0 mA		11	3.6 mA	12	4.6 mA	
t1	0.73 s	t2	0.57 s		t1	1.48 s	t2	1.15 s	
Test Rstart	Ma	inual R Auto			Test Istart	м	lanual I Auto		
Rmin(R Time lin	1,R2) mit(t1,t2)	50 kΩ Off	$ \begin{array}{cccc} L1 & PE & L2 \\ \bullet & 0 & \bullet & 0 \\ & & & & & \\ & & & & & & \\ & & & &$	•••	lmax(l1 Time lin	,12) nit(t1,t2)	4.4 mA Off	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Figure 7.86: Examples of IMD test result

Test results / sub-results

R1	Threshold insulation resistance between L1-PE
11	Calculated first fault leakage current for R1
t1	Activation / disconnection time of IMD for R1
R2	Threshold insulation resistance between L2-PE
12	Calculated first fault leakage current for R2

t2 Activation / disconnection time of IMD for R2

Calculated first fault leakage current at threshold insulation resistance is given as $I_{1(2)} = \frac{U_{L1-L2}}{R_{1(2)}}$, where U_{L1-L2} is line-line voltage. The calculated first fault current is the maximum current that would flow when insulation resistance decreases to the same value as the applied test resistance, and a first fault is assumed between opposite line and PE.

If any of the activation / disconnection time result (t1, t2) is out of set limit, overall status of the test is "failed" and cannot be modified manually. Otherwise, overall status can be user defined. If activation of IMD device is visual indication and/or audio alert, without voltage disconnection, Time limit (t1, t2) parameter should be set to "Off" to disable timing limitation.

7.26 Rpe – PE conductor resistance

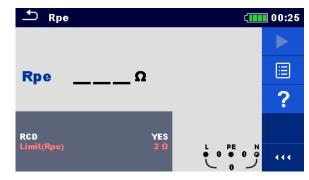


Figure 7.87: PE conductor resistance measurement menu

Measurement parameters / limits

RCD	[Yes, No]
Limit(Rpe)	Max. resistance [Off, Custom, 0.1 Ω 20.0 Ω]

Connection diagram

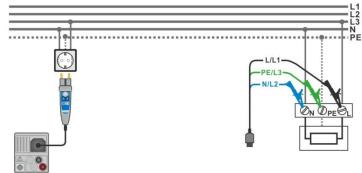


Figure 7.88: Connection of Plug commander and 3-wire test lead

Measurement procedure

- Enter the Rpe function.
 - Set test parameters / limits.
- Connect test cable to the instrument.
 - Connect test leads or Plug commander to the object under test, see *Figure 7.88*.
- Start the measurement.
 - Save results (optional).

Measurement results / sub-results

Rpe PE conductor resistance

7.27 Ilumination

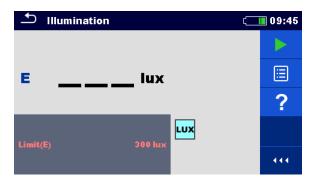
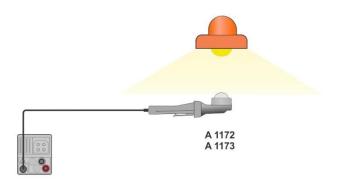



Figure 7.90: Illumination measurement menu

Measurement parameters / limits

Limit(E) Minimum illumination [Off, Custom, 0.1 lux ... 20 klux]

Probe positioning

Measurement procedure

•	Enter the Illumination function.
•	Set test parameters / limits.
•	Connect illumination sensor A 1172 or A 1173 to the instrument.
•	Take the position of LUXmeter probe, see <i>Figure 7.91</i> .
	Make sure that LUXmeter probe is turned on.
•	Start the continuous measurement.
•	Stop the measurement.
•	Save results (optional).

Figure 7.92: Examples of Illumination measurement result

Measurement results / sub-results

E Illumination

7.28 AUTO TT – Auto test for TT earthing system

Tests / measurements implemented in AUTO TT

Voltage	
Z line	
Voltage Drop	
Zs rcd	
RCD Uc	

🛨 АИТО ТТ		(07:56
UlnV ΔU% Ζ (LN)Ω Ζ (LPE)Ω	UcV ZrefΩ Ipsc (LN)A Ipsc (LPE)A	
I AN RCD type Fuse Type Fuse I Fuse t	30 mA A C 16 A 0.035 s	رب بر ال

Figure 7.93: AUTO TT menu

Measurement parameters / limits

ΙΔΝ	Rated RCD residual current sensitivity [10 mA, 15 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA]
Туре	RCD type [AC, A, F, B*, B+*]
Selectivity	Characteristic [G, S]
Fuse type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
I (ΔU) ¹⁾	Rated current for ∆U measurement (custom value)
Isc factor	Isc factor [Custom, 0.20 3.00]
l test	Test current [Standard, Low]
Limit(ΔU)	Maximum voltage drop [Off, Custom, 3.0 % 9.0 %]
Limit Uc	Conventional touch voltage limit [Custom, 12 V, 25 V, 50 V]
la(lpsc (LN))	Minimum short circuit current for selected fuse or custom value
¹⁾ Applicat	le if Fuse type is set to Off or Custom.

* Model MI 3152 only.

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

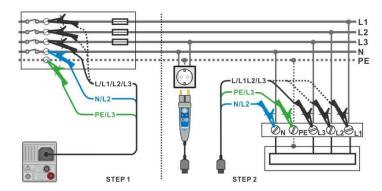


Figure 7.94: AUTO TT measurement

Measurement procedure

- Enter the AUTO TT function.
- Set test parameters / limits.
- Measure the impedance Zref at origin (optional), see chapter 7.15 Voltage Drop.
- Connect test cable to the instrument.
 - Connect test leads or Plug commander to the object under test, see Figure 7.94.
- Start the Auto test.
- Save results (optional).

🛨 АИТО ТТ	10:0 د	5 🗳 АИТО ТТ	ະ 10:09
Uln V	UcV 🕨	Uln 238 V Uc	0.0 v 🗸 🕨
dU%	Zref 0.54 Ω	dU 0.1 % ✓ Zref	0.54 Ω
Z (LN)Ω Z (LPE)Ω		Z (LN) 0.62 Ω Ipsc (l Z (LPE) 0.69 Ω Ipsc (l	
			LPE) 332 A
l dN Type	30 mA AC ?	IdN 30mA Type AC	🗸 🗸
Fuse Type Fuse I Fuse t		Fuse Type NV Fuse I 2 A Fuse t 0.035 s	

Figure 7.95: Examples of AUTO TT measurement results

Measurement results / sub-results

Uln	Voltage between phase and neutral conductors
ΔU	Voltage drop
Z (LN)	Line impedance
Z (LPE)	Loop impedance
Uc	Contact voltage
Zref	Reference Line impedance
lpsc (LN)	Prospective short-circuit current
Ipsc (LPE)	Prospective fault current

AUTO TN (RCD) – Auto test for TN earthing system 7.29 with RCD

Tests / measurements implemented in AUTO TN (RCD)

Voltage	
Z line	
Voltage Drop	
Zs rcd	
Rpe rcd	

🖆 AUTO TN (RCD)		(111 07:56
UlnV	RpeΩ	
ΔU%	Zref0	
Ζ(LN)Ω	lpsc (LN)A	
Ζ (LPE)Ω	lpsc (LPE)A	$\langle \circ \rangle$
Fuse Type Fuse I Fuse t	C 16 A 0.035 s	?
Limit(AU) la(lpsc (LN),lpsc (LPE)) Limit(Rpe)	3.5 % 160 A 2 Ω	

Figure 7.96: AUTO TN (RCD) menu

Measurement parameters / limits

Fuse type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]		
Fuse I	Rated current of selected fuse		
Fuse t	Maximum breaking time of selected fuse		
I (ΔU) ¹⁾	Rated current for ∆U measurement (custom value)		
Isc factor	Isc factor [Custom, 0.20 3.00]		
l test	Test current [Standard, Low]		
Limit(ΔU)	Maximum voltage drop [Off, Custom, 3.0 % 9.0 %]		
Limit (Rpe)	Max. resistance [Off, Custom, 0.1 Ω 20.0 Ω]		
la(lpsc (LN), lpsc (LPE))	Minimum short circuit current for selected fuse or custom value		
¹⁾ Applicable if Fu	se type is set to Off or Custom.		

Applicable if Fuse type is set to Off or Custom.

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

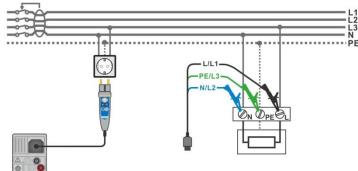


Figure 7.97: AUTO TN (RCD) measurement

Measurement procedure

- Enter the AUTO TN (RCD) function.
- Set test parameters / limits.
 - Measure the impedance Zref at origin (optional), see chapter 7.15 Voltage Drop.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see *Figure 7.97*.
- Start the Auto test.
- Save results (optional).

🗅 AUTO TN (RCD)		(111) 08:08	📥 AUTO TN (RCD)		¢	08:09
UlnV	RpeΩ		Uln 228 v	Rpe	0.04Ω 🗸	
ΔU% Z (LN)Ω	Zref 0.53 Ω		ΔU 0.1% ✓ Z (LN) 0.54Ω	Zref lpsc (LN)	0.53Ω 426₄ ✓	
Z (LPE)Ω	Ipsc (LPE)A	$\langle \bullet \rangle$	Z (LPE) 0.49 Ω		e) 469 ∧ ✓	
Fuse Type Fuse I Fuse t	C 16 A 0.035 s	?	Fuse Type Fuse I Fuse t	C 16 A 0.035 s	~	$\langle \bullet \rangle$
Limit(AU) la(lpsc (LN),lpsc (LPE)) Limit(Rpe)	3.5 % L PE 160 A ● 229 ● 2 Ω 228		Limit(AU) la(lpsc (LN),lpsc (LPE)) Limit(Rpe)	3.5 % 160 Α 2 Ω	$ \begin{array}{c} L & PE & N \\ \bullet 228 \bullet & 1 & \bullet \\ & 228 & \checkmark \end{array} $	•••

Figure 7.98: Examples of AUTO TN (RCD) measurement results

Measurement results / sub-results

UIn	Voltage between phase and neutral conductors		
ΔU	Voltage drop		
Z (LN)	Line impedance		
Z (LPE)	Loop impedance		
Rpe	PE conductor resistance		
Zref	Reference Line impedance		
lpsc (LN)	Prospective short-circuit current		
Ipsc (LPE)	Prospective fault current		

7.30 AUTO TN – Auto test for TN earthing system without RCD

Tests / measurements implemented in AUTO TN

Voltage	
Z line	
Voltage Drop	
Z loop	
Rpe	

		(08:10
UlnV	Rpe	Ω 🕨
ΔU% Z (LN)Ω	Zref lpsc (LN)	Ω A 🗄
Ζ (LPE)Ω	lpsc (LPE)	
Fuse Type Fuse I Fuse t	C 16 A 0.035 s	?
Limit(AU) Limit(Rpe) la(lpsc (LN),lpsc (LPE))	3.5% L 2Ω •1 160A ·	

Figure 7.99: AUTO TN menu

Measurement parameters / limits

Fuse type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]		
Fuse I	Rated current of selected fuse		
Fuse t	Maximum breaking time of selected fuse		
Ι (ΔU) ¹⁾	Rated current for ∆U measurement (custom value)		
Isc factor	Isc factor [Custom, 0.20 3.00]		
Limit(ΔU)	Maximum voltage drop [Off, Custom, 3.0 % 9.0 %]		
Limit(Rpe)	Max. resistance [Off, Custom, 0.1 Ω 20.0 Ω]		
la(Ipsc (LN), Ipsc (LPE))	Minimum short circuit current for selected fuse or custom value		

¹⁾ Applicable if Fuse type is set to Off or Custom.

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

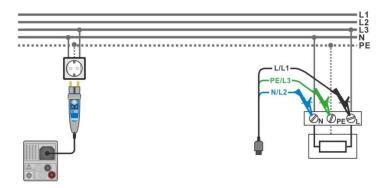


Figure 7.100: AUTO TN measurement

Measurement procedure

- Enter the AUTO TN function.
- Set test parameters / limits.
- Measure the impedance Zref at origin (optional), see chapter 7.15 Voltage Drop.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see *Figure 7.100*.
- Start the Auto test.
- Save results (optional).

Δ Αυτό τη	راب 10 د 10		(111) 08:10
UlnV	RpeΩ 🕨	Uln 227 v Rpe 0.02 g	1 🗸 🕨
ΔU%	Zref 0.53Ω	ΔU 0.2% 🗸 Zref 0.53 (
Ζ(LN)Ω	Ipsc (LN)A	Z (LN) 0.56 Ω Ipsc (LN) 409 A	🗸 🧹 🗎
Z (LPE)Ω	lpsc (LPE)A	Z (LPE) 0.51 Ω Ipsc (LPE) 448 A	• 🖌 📃
Fuse Type Fuse I	16A 2	Fuse Type C Fuse I 16 A	
Fuse t	0.035 s	Fuse t 0.035 s	
Limit(AU) Limit(Rpe) la(lpsc (LN),lpsc (LPE))	3.5% 2Ω 160 A L PE 0228 1 228 1 228 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Limit(AU) 3.5 % Limit(Rpe) 2 Ω la(lpsc (LN),lpsc (LPE)) 160 A	1 9 114

Figure 7.101: Examples of AUTO TN measurement results

Measurement results / sub-results

rop dance
dance
edance
ctor resistance
e Line impedance
e short-circuit current
-

7.31 AUTO IT – Auto test for IT earthing system (MI 3152 only)

Tests / measurements implemented in AUTO IT

Voltage	
Z line	
Voltage Drop	
ISFL	
IMD	

		(11:00
Uln V	dU %	
lsc1 mA	lsc2 mA	
<mark>R1</mark> kΩ	11 mA	
<mark>R2</mark> kΩ	12 mA	
Z (LN) Ω	lpsc (LN) A	
ZrefΩ		
Fuse Type	NV	?
Fuse I Fuse t	2 A L1 PE	2 L2
Test	Auto R	ייי <mark>י</mark>

Figure 7.102: AUTO IT menu

Measurement parameters / limits

Fuse type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
I (ΔU) ¹⁾	Rated current for ∆U measurement (custom value)
Test	Test mode [MANUAL R, MANUAL I, AUTO R, AUTO I]
t step	Timer (AUTO R and AUTO I test modes) [1 s 99 s]
Isc factor	Isc factor [Custom, 0.20 3.00]
Limit(dU)	Maximum voltage drop [Off, Custom, 3.0 % 9.0 %]
Rmin(R1,R2)	Min. insulation resistance [Off, 5 k Ω 640 k Ω],
Imax(I1,I2)	Max. fault current [Off, 0.1 mA 19.9 mA]
Imax(Isc1,Isc2)	Maximum first fault leakage current [Off, Custom, 3.0 mA 19.5 mA]
la(lpsc (LN))	Minimum short circuit current for selected fuse or custom value
¹⁾ Applicable	if Fuse type is set to Off or Custom.

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

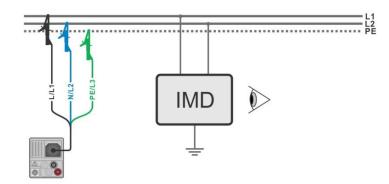


Figure 7.103: AUTO IT measurement

Measurement procedure

|--|

Set test parameters / limits.

Measure the impedance Zref at origin (optional), see chapter 7.15 Voltage Drop.

- •
- Connect test cable to the instrument.
- Connect test leads to the object under test, see Figure 7.103.
- Start the Auto test.
 - Save results (optional).

🛨 АИТО ІТ	໌ 11:0		(IIII 11:02
Uin V Isc1 mA	dU%	Uin 219 V dU 0.0 % Isc1 2.2 mA ✓ Isc2 2.2 mA	*
R1 kΩ R2 kΩ	11 mA	R1 50 kΩ 11 4.4 mA R2 45 kΩ 12 4.9 mA	
Z (LN)Ω Zref 4.03 Ω	lpsc (LN) A	Z (LN)3.98 Ω Ipsc (LN)57.8 A Zref 4.03 Ω	✓ 🗉
Fuse Type	NY ?	Fuse Type NV	 ✓ ○
Fuse I Fuse t Test	2 A 0.035 s Auto R 219 444	Fuse I 2 A Fuse t 0.035 s Test Auto R	110 • • • • •

Figure 7.104: Examples of AUTO IT measurement results

Measurement results / sub-results

Uln	Voltage between phases L1 and L2
ΔU	Voltage drop
lsc1	First fault leakage current at single fault between L1/PE
lsc2	First fault leakage current at single fault between L2/PE
R1	Threshold insulation resistance between L1-PE
R2	Threshold insulation resistance between L2-PE
l1	Calculated first fault leakage current for R1
12	Calculated first fault leakage current for R2
Z (LN)	Line impedance
Zref	Reference Line impedance
lpsc (LN)	Prospective short-circuit current

Z auto - Auto test for fast line and loop testing 7.32

Tests / measurements implemented in Z auto test sequence

Voltage	
Z line	
Voltage Drop	
Zs rcd	
Uc	

🗂 Z auto				08:12
Uln	v	ΔU	%	
Z (LN)	Ω	lpsc (LN)	A	E
Z (LPE)	Ω	lpsc (LPE)	A	
Uc	V			$\langle \mathbf{O} \rangle$
Protection	Ω	TN red		?
Fuse Type Fuse I		С 16 А	L PE N ● 1 ● 1 ●	-
Fuse t Isc factor		0.035 s 1	じょう	444

Figure 7.105: Z auto menu

Measurement parameters / limits

Protection	Protection type [TN, TNrcd, TTrcd]
Fuse type	Selection of fuse type [Off, Custom, gG, NV, B, C, D, K, Z, L, U]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
I (ΔU) ¹⁾	Rated current for ΔU measurement (custom value)
Isc factor	Isc factor [Custom, 0.20 3.00]
I test	Test current [Standard, Low]
Туре	RCD type [AC, A, F, B*, B+*]
ΙΔΝ	Rated RCD residual current sensitivity [10 mA, 15 mA, 30 mA, 100 mA, 300
	mA, 500 mA, 1000 mA]
Selectivity	Characteristic [G, S]
Phase ²⁾	Selection of test [-, L1, L2, L3]
I test	Test current [Standard, Low]
Limit(ΔU)	Maximum voltage drop [Off, Custom, 3.0 % 9.0 %]
la(lpsc (LN), lpsc (LPE)) ³⁾	Minimum short circuit current for selected fuse or custom value
Limit Uc	Conventional touch voltage limit [Custom, 12 V, 25 V, 50 V]
¹⁾ Applicable	if Fuse type is set to Off or Custom.

set to Off or Custom.

2) With Plug test cable or Plug commander Z auto test is measured in the same way regardless of the setting. The parameter is meant for documentation.

3) Ipsc (LPE) is considered if Protection is set to TN or TNrcd. Ipsc(LN) is always considered.

* Model MI 3152 only

Refer to *Fuse tables guide* for detailed information on fuse data.

Connection diagram

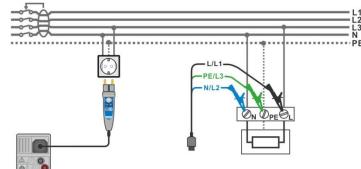


Figure 7.106: Z auto measurement

Measurement procedure

- Enter the **Z** auto function.
- Set test parameters / limits.
- Measure the impedance Zref at origin (optional), see chapter 7.15 Voltage Drop.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see *Figure 7.97*.
- Start the test.
 - Save results (optional).

🛨 Z auto		(111) 08:12	🗂 Z auto	08:13 ر
UInV	ΔU%		UIn 228 ν Δυ	0.0%
Ζ (LN)Ω	lpsc (LN)A		Z (LN) 0.53 Ω lpsc (LN)	
Ζ (LPE)Ω	lpsc (LPE)A		Z (LPE) 0.53 Ω Ipsc (LPE) 430 A
UcV		$\langle \bullet \rangle$	Uc 0.0 v√	
Zref 0.54Ω Protection	TN rcd	?	Zref 0.54Ω Protection TN rcd	(A)
Fuse Type Fuse I			Fuse Type C Fuse I 16 A	
Fuse t lsc factor	0.035 s 1 227 •	j l	Fuse t 0.035 s Isc factor 1	

Figure 7.107: Example of Z auto measurement results

Measurement results / sub-results

Uln	Voltage between phase and neutral conductors
ΔU	Voltage drop
Z (LN)	Line impedance
Z (LPE)	Loop impedance
Zref	Reference Line impedance
lpsc (LN)	Prospective short-circuit current
Ipsc (LPE)	Prospective fault current
Uc	Contact voltage

7.33 R line m Ω – DC resistance measurement (MI 3144)

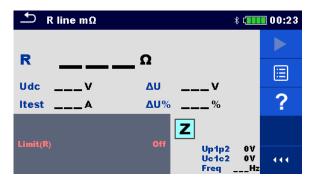


Figure 7.108: R line $m\Omega$ menu

Measurement parameters / limits

Limit (R) Limit	[Off, Custom, 0.01 Ω 19 Ω]
-----------------	----------------------------

Connection diagram

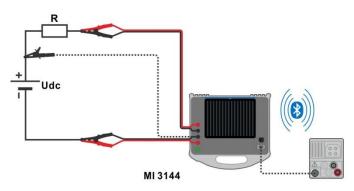


Figure 7.109: R line $m\Omega$ measurement connection

Refer to MI 3144 – Euro Z 800 V Instruction manual for detailed information.

Measurement procedure

Þ	Connect MI 3152(H) instrument with MI 3144 Euro Z 800 V instrument via serial RS232 or pair them using Bluetooth communication. See 4.6.5.1 Selection and configuration of measuring adapters .
•	Enter the R line m Ω function.
•	Set test parameters / limits.
•	Check Bluetooth communication active sign if MI 3144 Euro Z 800 V instrument is connected to MI 3152(H) instrument via Bluetooth communication.
•	Connect test leads to MI 3144 Euro Z 800 V instrument.
•	Connect test leads to the object under test. Refer to <i>MI</i> 3144 Euro Z 800 V Instruction manual for detailed information.
Þ	Start the measurement using or button.
•	Save results (optional).

Figure 7.110: Example of R line $m\Omega$ measurement result

Measurement results / sub-results

R	Line resistance
ltest	Test current
Udc	Voltage
ΔU	Voltage drop
∆U%	Voltage drop in percentage

Voltage monitor:

voltago momento:	
Up1p2	Voltage P1-P2
Uc1c2	Voltage C1-C2
Freq	Frequency

Refer to MI 3144 Euro Z 800 V Instruction manual for detailed information.

7.34 ELR Current Injection Test (MI 3144)

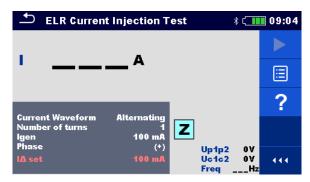
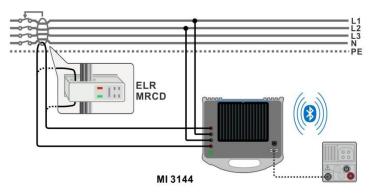
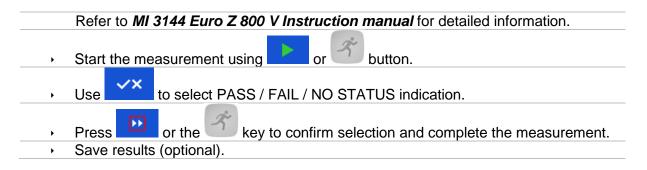



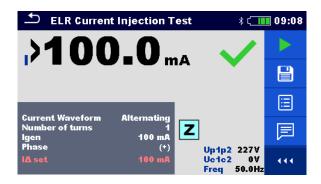
Figure 7.111: ELR Current Injection Test menu

Measurement parameters / limits

Current Waveform Current waveform [Alternating, Pulsating, DC]	
Number of turns	Number of turns [1 10]
l gen	Current [3 mA, 5 mA, 6 mA, 10 mA, 15 mA, 30 mA, 50 mA, 100 mA, 150 mA, 250 mA, 300 mA, 500 mA]
Phase	Phase [(+), (-)]
l∆ set	Current limit for selected generated current and number of turns.

Connection diagram





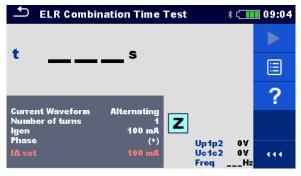
Refer to MI 3144 Euro Z 800 V Instruction manual for detailed information.

Measurement procedure

•	Connect MI 3152(H) instrument with MI 3144 Euro Z 800 V instrument via serial RS232 or pair them using Bluetooth communication. See <i>4.6.5.1 Selection and configuration of measuring adapters</i> .
•	Enter the ELR Current Injection Test function.
•	Set test parameters / limits.
•	Check Bluetooth communication active sign if MI 3144 Euro Z 800 V instrument is connected to MI 3152(H) instrument via Bluetooth communication.
•	Connect test leads to MI 3144 Euro Z 800 V instrument.
•	Connect test leads to the object under test. See Figure 7.112.

Figure 7.113: Example of ELR Current Injection Test measurement result

Measurement results / sub-results


I Current

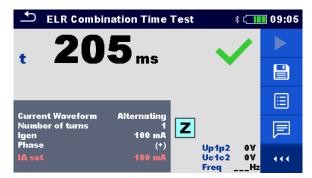
Voltage monitor:

voltago monton.		
Up1p2	Voltage P1-P2	
Uc1c2	Voltage C1-C2	
Freq	Frequency	

Refer to MI 3144 Euro Z 800 V Instruction manual for detailed information.

7.35 ELR Combination Time Test (MI 3144)

Measurement parameters / limits


Current Waveform	Current waveform [Alternating, Pulsating, DC]
Number of turns	Number of turns [1 10]
l gen	Current [3 mA, 5 mA, 6 mA, 10 mA, 15 mA, 30 mA, 50 mA, 100 mA, 150 mA, 250 mA, 300 mA, 500 mA]
Phase	Phase [(+), (-)]
Test duration	Duration [0.3 s, 0.5 s, 1 s, 2 s, 5 s, 10 s, 20 s]
l∆ set	Current limit for selected generated current and number of turns.

Connection diagram

See Figure 7.112. Refer to MI 3144 Euro Z 800 V Instruction manual for detailed information.

Measurement procedure

•	Connect MI 3152(H) instrument with MI 3144 Euro Z 800 V instrument via serial RS232 or pair them using Bluetooth communication. See chapter 4.6.5.1 Selection
	and configuration of measuring adapters.
•	Enter the ELR Combination Time Test function.
•	Set test parameters / limits.
•	Check Bluetooth communication active sign if MI 3144 Euro Z 800 V instrument is
	connected to MI 3152(H) instrument via Bluetooth communication.
•	Connect test leads to MI 3144 Euro Z 800 V instrument.
•	Connect test leads to the object under test. See Figure 7.112.
	Refer to MI 3144 Euro Z 800 V Instruction manual for detailed information.
•	Start the measurement using or button.
•	Use view to select PASS / FAIL / NO STATUS indication.
•	Press or the key to confirm selection and complete the measurement.
•	Save results (optional).

Figure 7.115: Example of ELR Combination Time Test result

Measurement result

t Time

Voltage monitor:

Up1p2	Voltage P1-P2
Uc1c2	Voltage C1-C2
Freq	Frequency

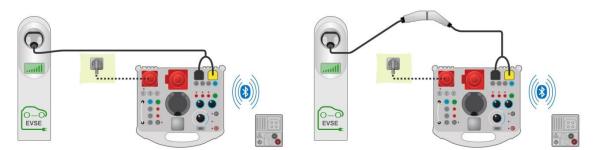
Refer to MI 3144 Euro Z 800 V Instruction manual for detailed information.

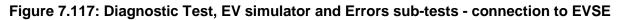
7.36 EVSE Diagnostic Test (A 1632)

EVSE Diagnostic Test should be performed with A 1632 eMobility Analyser connected with MI 3152(H) instrument via Bluetooth communication.

Diagnostic Test (EVSE)	* 💶 21:10	🗅 Diagnostic Test (EV\$E) 🛛 🕴 🧲	21:11	🗅 Diagnostic Test (EV\$E) 🛛 🕴	121:11
CP+V U1NV CP U2NV D% U3NV FreqV Field levseA State	►	CP+ V U1N V CP- U2N V D % U3N V Freq	► ≣ ?	CP+ V U1N V CP- U2N V D	►
Test EV simulator Simulator CP C Simulator PP 20 A Duration Off Control Remote (Bluetooth)		Test Errors Toff C-> E1 Duration Off	444	Test Monitor Duration Off	111

Figure 7.116: Diagnostic Test (EVSE) start screens – EV simulator, Errors and Monitor


Measurement parameters / limits


With selection of the Test parameter on the start screen, three diagnostic sub-tests can be set.

Test	Test [EV simulator, Monitor, Errors] EV simulator - Simulation of Electrical Vehicle			
	Monitor - Monitoring of EVSE – EV interconnection and signalling			
	Errors - Simulation of CP Errors			
Toff	Simulated CP errors [C->E1, C->E2, C->E3, D->E1, D->E2, D->E3]			
Simulator CP	CP (control pilot) state setting [nc, A, B, C, D]			
Simulator PP	PP (proximity pilot) state setting [nc, 13 A, 20 A, 32 A, 63 A, 80 A]			
Duration	Test duration [Off, 2 s, 3 s, 5 s, 10 s, 30 s, 60 s, 90 s, 120 s, 180 s]			
Control	Analyser control [Remote (Bluetooth), Manual (A 1632)]			

Connection diagrams

Refer to A 1632 – eMobility Analyser Instruction manual for detailed information.

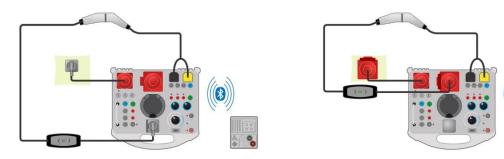


Figure 7.118: Diagnostic Test, EV simulator and Errors sub-tests - connection to Mode 2 charging cable powered from Analyser

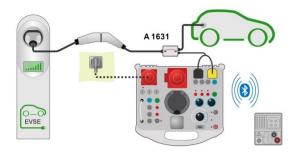


Figure 7.119: Diagnostic Test (EVSE) - Monitor sub-test - connection to EVSE or charging cable

Diagnostic test procedure

•	Pair and connect MI 3152(H) with A 1632 eMobility Analyser instrument via Bluetooth communication. See chapter 4.6.5.1 Selection and configuration of measuring adapters .
•	Enter the Diagnostic Test (EVSE) function.
•	Set test parameters / limits.
•	Check Bluetooth communication active sign if A 1632 eMobility Analyser is connected to MI 3152(H) instrument via Bluetooth communication.
•	Connect the charging cable / station to A 1632 eMobility Analyser adapter. See <i>Figure</i> 7.117 , <i>Figure 7.118</i> and <i>Figure 7.119</i> . Refer to A 1632 eMobility Analyser Instruction manual for detailed information.
•	Start the measurement using or button.
•	Manually apply status (optional).
•	Stop the measurement using en button.

Diagnostic Test (EVSE)	* C 00:27	Diagnostic Test (EVSE)	* 💶 00:21	Diagnostic Test (EVSE)	* 💶 00:24
CP+ 5.93 V U1N 233 V CP11.6 V U2N 232 V D 41.5 % U3N 233 V Freq 1.00 kHz Field 123 levse 24.9 A State C2		CP+ 5.93 ¥ U1N 1¥ CP- −11.6 ¥ U2N 2 ¥ D 41.5 % U3N 2 ¥ Freq 1.00 kHz levse 24.9 A toff 51.9 ms ✓		CP+ 5.94 V UN 231 V CP11.6 V U2N 230 V D 33.2 % U3N 232 V Freq 1.00 kHz Field 123 Ievse 19.9 A State C2	
Test EV simulator Simulator CP C	~×	Test Errors	~×	Test Monitor	~×
Simulator PP 20 A Duration Off Control Remote (Bluetooth)		Toff C -> E3 Duration Off		Duration Off	

Figure 7.120: Examples of Diagnostic Test (EVSE) measurement results – EV simulator, Errors and Monitor

Measurement results / sub-results

CP+	Maximal value of CP (control pilot) signal
CP-	Minimal value of CP (control pilot) signal
D	Duty cycle of CP (control pilot) signal
Freq	Frequency of CP (control pilot) signal
levse	Charging current available by charging cable / EVSE
U1N	Voltage UL1-N on the output of charging cable / EVSE
U2N	Voltage UL2-N on the output of charging cable / EVSE
U3N	Voltage UL3-N on the output of charging cable / EVSE

Field	1.2.3 – correct connection – CW rotation sequence 3.2.1 – invalid connection – CCW rotation sequence
toff	Disconnection time of charging cable / EVSE
State	System state

Refer to A 1632 eMobility Analyser Instruction manual for detailed information.

7.37 Locator

This function is intended for tracing mains installation, like:

- Tracing lines,
- Finding shorts, breaks in lines,
- Detecting fuses.

The instrument generates test signals that can be traced with the handheld tracer receiver R10K. See *Appendix C – Locator receiver R10K* for additional information.

Figure 7.121: Locator main screen

Typical applications for tracing electrical installation

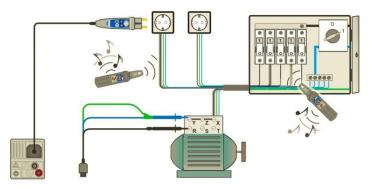


Figure 7.122: Tracing wires under walls and in cabinets

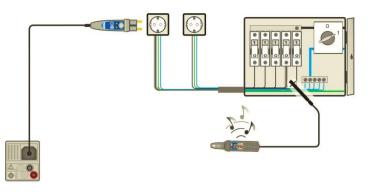


Figure 7.123: Locating individual fuses

Line tracing procedure

- Select Locator function in Other menu.
- Connect test cable to the instrument.
- Connect test leads to the tested object (see Figure 7.122 and Figure 7.123).
- Start the test.
- Trace lines with receiver (in IND mode) or receiver plus its optional accessory.
- Stop the test.

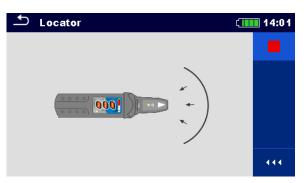


Figure 7.124: Locator active

7.38 Functional inspections

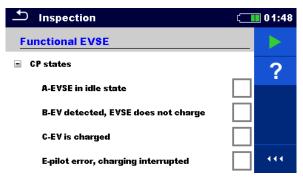


Figure 7.125: Example of Functional inspection menu

Inspection

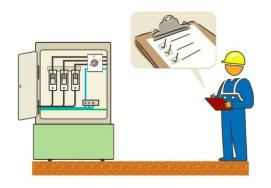


Figure 7.126: Functional inspection test circuit

Functional inspection procedure

- Select the appropriate Functional Inspection test from **Function** menu.
- Start the inspection.
- > Perform the inspection of the item under test.
- Apply appropriate ticker(s) to items of inspection.
- End inspection.
- Save results (optional).

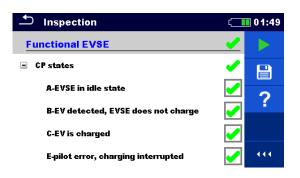


Figure 7.127: Example of Functional inspection results

7.39 Measurements using adapter MD 9273

Clamp MD 9273 can be used as an adapter connected via Bluetooth[®] communication with EurotestXC in manner to expand it Power quality Test range. Supported test measurements and signal recordings are:

- P- Power
- U Voltage
- I Current
- Imax Inrush current
- h_n Harmonics U Voltage harmonics
- h_n Harmonics I Current harmonics

Required test is selected from the CLAMP section of the Single Tests menu, see *Figure 7.128* below. Menu is available only when Adapter MD 9273 is set, see chapters **4.6.5 Settings** and **9.3 Communication with Adapters** for details.

Figure 7.128: CLAMP single test selection menu

Selected test is configured from EurotestXC. Adapter MD 9273 acquires test signals, process measurements and send results to the EurotestXC. Results are presented on the instrument screen and can be saved to the Workspace memory for later use.

7.39.1 Power CLAMP

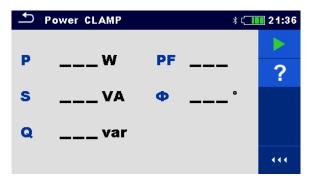


Figure 7.129: Power CLAMP menu

Measurement parameters

There are no parameters to be set.

Connection diagram

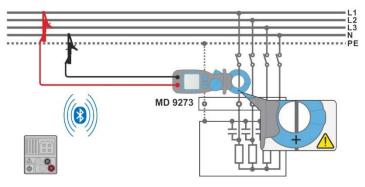


Figure 7.130: Power CLAMP connection

Measurement procedure

- Connect MD 9273 to the item to be tested and set Bluetooth[®] mode.
- Enter the **Power CLAMP** function and wait for active Bluetooth[®] communication sign.
- Start the continuous measurement.
- Stop the measurement.
- Save results (optional).

Measurement results / sub-results

Ρ	Active power
S	Apparent power
Q	Reactive power (capacitive or inductive)
PF	Power factor (capacitive or inductive)
Φ	Phase displacement between voltage and current in degrees

Note:

Voltage test terminals connection and current flow toward load should be taken into account; the red voltage terminal should be connected to the Line terminal and the jaw should be correctly oriented, to obtain positive sign of Power test result. If Power test result has negative sign, connection of voltage terminal or jaw orientation are opposite and the result of phase displacement angle has opposite sign too. Consequently, load character determination (capacitive or inductive) is mismatched.

7.39.2 Voltage CLAMP

🛨 Volta	ge CLAMP		* (11:00
Uac	v	THDu	%	
Uac min	V	THDu	V	E
Uac max	v	CFu		
Udc	v	Freq	Hz	?
Uh	v			
h		5		444

Figure 7.132: Voltage CLAMP menu

Measurement parameters

h Harmonic setup [1 to 19, 1st is fundamental frequency]

Connection diagram

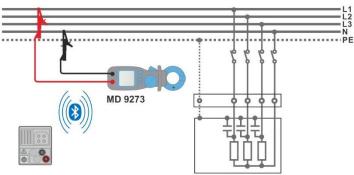


Figure 7.133: Voltage CLAMP connection

Measurement procedure

- Connect MD 9273 to the item to be tested and set Bluetooth[®] mode.
- Enter the Voltage CLAMP function and wait for active Bluetooth[®] communication sign.
- Set test parameter.
- Start the continuous measurement.
- Stop the measurement.
- Save results (optional).

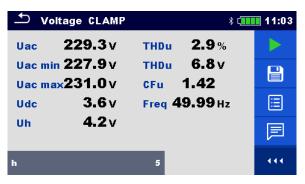


Figure 7.134: Voltage CLAMP results

Measurement results / sub-results

Uac	Effective ac voltage value – last obtained result
Uac min	Minimum effective ac voltage value during measurement time duration
Uac max	Maximum effective ac voltage value during measurement time duration
Udc	DC voltage value
THDu [V]	Effective voltage value of all harmonics (without voltage value at fundamental frequency)
THDu [%]	Total harmonic distortion
Uh	Effective voltage value of set harmonic
CFu	Voltage Crest factor – peak voltage to effective ac voltage ratio
Freg	Fundamental frequency

7.39.3 Current CLAMP

🖆 Current CLAMP			¥ (111	11:21
lac	A	THDi	%	
lac min	A	THDi	A	
lac max	A	CFi		?
Ib	A	Freq	Hz	
_		_		
h		3		• • •

Figure 7.135: Current CLAMP menu

Measurement parameters

h Harmonic setup [1 to 19, 1st is fundamental frequency]

Connection diagram

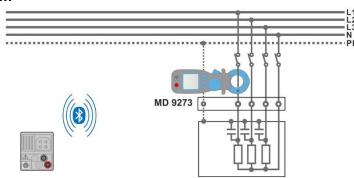


Figure 7.136: Current CLAMP connection

Measurement procedure

- Connect MD 9273 to the item to be tested and set Bluetooth[®] mode.
- Enter the **Current CLAMP** function and wait for active Bluetooth[®] communication sign.
- Set test parameter.
- Start the continuous measurement.

- Stop the measurement.
- Save results (optional).

Figure 7.137: Current CLAMP results

Measurement results / sub-results

lac	Effective ac current value – last obtained result
lac min	Minimum effective ac current value during measurement time duration
lac max	Maximum effective ac current value during measurement time duration
THDi [A]	Effective current value of all harmonics (without current value at fundamenta frequency)
THDi [%]	Total harmonic distortion
lh -	Effective current value of set harmonic
CFi	Current Crest factor – peak current to effective current ratio
Freq	Fundamental frequency

7.39.4 Inrush CLAMP

Inrush CLAMP function records current and voltage transients that occur when load is turned on. Recorded values are presented on the screen of the instrument in separate charts. Two event triggers can be set, Voltage dip or Inrush current. Only one trigger can be active at the same time; when one is set, the other is switched off automatically. Voltage dip trigger is effective only if MD 9273 Voltage input is connected to supply circuit. Minimum effective circuit voltage is calculated during recorded transient and compared with set voltage threshold. Inrush current trigger is effective only if the wire with flowing current is embraced with MD 9273 jaws. Maximum effective ac circuit current is calculated during recorded transient and compared with set Inrush threshold.

After Inrush Test is started, MD 9273 starts to record signals and waits for trigger event to

occur, which is symbolised with sign is on the bottom right of the screen. Displayed chart is divided in Pre-trigger area, presenting first second of total set chart duration time and transient event area – rest of the chart duration time.

└── Inrush CLAMP	\$ (111 07:30	└── Inrush CLAMP	* (111 07:31
In 5. A/div		II 5 A/div	A
Umin 0 s 1.0 s 2.0 s 3.0 s		0 s 1.0 s 2.0 s 3.0 s U: 5. U/div. Uac 227.3 ∀ Iac 1.2 m	
Start	?	0 5 1.0 5 2.0 5 3.0 5	
Inrush threshold 50 mA Voltage threshold Off		Inrush threshold 50 mA Voltage threshold Off	•••

Figure 7.138: Inrush CLAMP menu – setup on the left, waiting for trigger on the right

Test parameters

Inrush threshold Inrush current threshold setting [Off, 5 mA 90 A]	
Voltage threshold	Voltage dip threshold setting [Off, 50 V 500 V]
Duration	Recording duration [3 s, 10 s]

Connection diagram

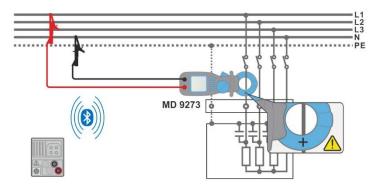


Figure 7.139: Inrush CLAMP connection

Test procedure

- Connect MD 9273 to the item to be tested and set Bluetooth[®] mode.
- Enter the Inrush CLAMP function and wait for active Bluetooth[®] communication sign.
- Set test parameters.
- Set charts Y value range¹⁾ within expected values (optional; could be set later, after the test).
- Start the test.
- Initiate set threshold event or manually trigger test recording.
 - Save results (optional) after test is finished and results and recorded charts are presented on the screen.
 - ¹⁾ Chart range selection:
 - Voltage range [100 mV/div ... 100 V/div]
 - Current range [10 mA/div ... 200 A/div]

Inrush CLAMP	* 🚛	07:34
I: 50 A/div 102.6 m A 1.090 s	1 max102.9 mA	Ì⊐,
0 s 1.0 s 2.0 s 3.0	Umin 225.1 v	企
UF 100 U/dio 2 226.4 V 226.4 V 1.090 s	2	公
0 5 1.0 5 2.0 5 3.0	Start 21.Aug.2020 07:32:14	4
	mA Off	

Figure 7.140: Inrush CLAMP results

Test results / sub-results

l:	Inrush current chart ²⁾ range
	Recorded effective ac current value at cursor position
	Relative time of recorded data at cursor position
U:	Circuit voltage chart ²⁾ range
	Recorded effective ac voltage value at cursor position
	Relative time of recorded data at cursor position
Imax	Inrush current maximum value of recorded data
Umin	Circuit voltage dip minimum value of recorded data
Uac	Effective ac voltage (within the measurement)
lac	Effective ac current (within the measurement)
Start	Inrush test start recording time (from Master Instrument)

²⁾ Tap on chart area or drag graph line cursor to present chart value at chosen time. Use left / right arrow keys for smooth setting.

7.39.5 Harmonics U CLAMP

Harmonics (1 through to 19) are measured and displayed in the chart as an absolute magnitude of the signal or as a percentage of the signal value at the fundamental frequency (the 1st harmonic h1). Absolute magnitude or percent value display is chosen by Type parameter setting.

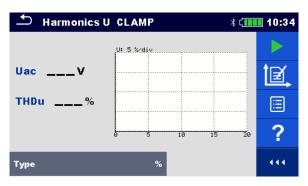


Figure 7.141: Harmonics U CLAMP menu

Measurement parameters

Туре	[%, V]
	% – harmonics and distortion are displayed as relative value
	V – harmonics and distortion are displayed as absolute value

Connection diagram

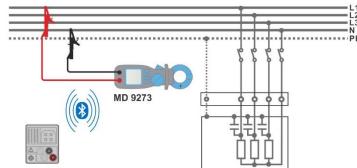


Figure 7.142: Harmonics U CLAMP connection

Measurement procedure

- Connect MD 9273 to the item to be tested and set Bluetooth[®] mode.
- Enter the Harmonics U CLAMP function and wait for active Bluetooth[®] communication.
- Set Type parameter.
 - Set charts Y value range³⁾ within expected values (optional; could be set later, after the test).
- Start the continuous measurement.
- Stop the measurement.
 - Save results (optional).
 - ³⁾ Chart Voltage range selection: [100 mV/div ... 100 V/div]



Figure 7.143: Harmonics U CLAMP results

Measurement results / sub-results

U:	Harmonics chart range
Uac	Effective ac voltage value
THDu [%]	Total harmonic distortion
THDu [V]	Effective voltage value of all harmonics (without voltage value at fundamental frequency)
U:h5 [%]	Relative value of 5 th harmonic ⁴⁾
U:h5 [V]	Absolute voltage of 5 th harmonic ⁴⁾

⁴⁾ Tap on chart area at chosen harmonic to present its value.

7.39.6 Harmonics I CLAMP

Harmonics (1 through to 19) are measured and displayed in the chart as an absolute magnitude of the signal or as a percentage of the signal value at the fundamental frequency (the 1st harmonic h1). Absolute magnitude or percent value display is chosen by Type parameter setting.

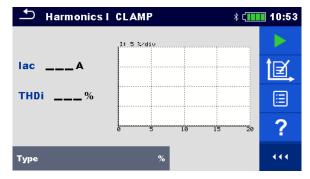


Figure 7.144: Harmonics I CLAMP menu

Measurement parameters

measure enter	
Туре	[%, A]
	% – harmonics and distortion are displayed as relative value
	A – harmonics and distortion are displayed as absolute value

Connection diagram

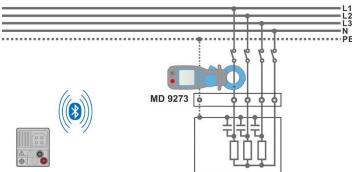


Figure 7.145: Harmonics I CLAMP connection

Measurement procedure

- Connect MD 9273 to the item to be tested and set Bluetooth[®] mode.
- Enter the Harmonics I CLAMP function and wait for active Bluetooth[®] communication.
- Set Type parameter.
- Set charts Y value range within expected values (optional; could be set later, after the test).
- Start the continuous measurement.
- Stop the measurement.
- Save results (optional).

Figure 7.146: Harmonics I CLAMP results

Measurement results / sub-results

Harmonics chart
Effective ac current value
Total harmonic distortion
Effective current value of all harmonics (without current value at fundamental frequency)
Relative value of 3 rd harmonic ⁵⁾
Absolute current value of 3 rd harmonic ⁵⁾

⁵⁾ Tap on chart area at chosen harmonic to present its value.

8 Auto Sequences®

Pre-programmed sequences of measurements can be carried out in Auto Sequences® menu. The results of an Auto Sequence® can be stored in the memory together with all related information.

8.1 Selection of Auto Sequences®

The Auto Sequence® to be carried out can be selected from the Main Auto Sequences® menu. This menu is organized in a structural manner with folders, sub-folders and Auto sequences®. An Auto Sequence® in the structure can be the original Auto sequence® or a shortcut to the original Auto Sequence®.

Auto Sequences marked as shortcuts and the original Auto Sequences® are coupled. Changing of parameters or limits in any of the coupled Auto Sequences® will influence on the original Auto Sequence® and all its shortcuts.

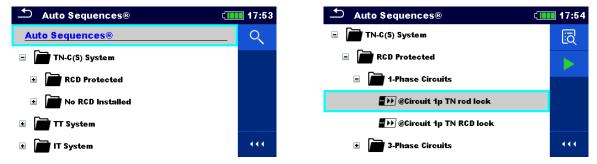


Figure 8.1: Examples of organized Auto Sequences® in Main Auto Sequences® menu

Options			
Auto Sequence®	The original Auto Sequence®		
Auto Sequence®	A shortcut to the original Auto Sequence®		
	Enters menu for more detail view of selected Auto Sequence®. This option should also be used if the parameters / limits of the selected Auto Sequence® have to be changed. Refer to chapter 8.2.1 Auto Sequences® view menu for more information.		
	Starts the selected Auto Sequence®. The instrument immediately starts the Auto Sequence®.		
्	Searches within the Auto Sequences® menu. Refer to chapter 8.1.1 Searching in Auto Sequences ® menu for more information.		

Note

 The content of preprogramed Auto Sequences® depends on the selected instrument profile. It is not possible to add user defined Auto Sequences[®] to MI 3152 or MI 3152H. Only pre-programed / profile Auto Sequences[®] are available for these two instruments.

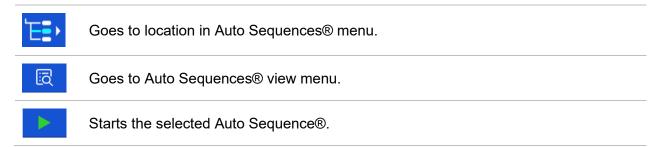
8.1.1 Searching in Auto Sequences® menu

In Auto Sequences® menu it is possible to search for Auto Sequences® on base of their Name or Short code.

Proce	dure	
1	Auto Sequences® 17:56 Auto Sequences® Q Image: The C(S) System Q Image: The The C(S) System Image: The C(S) System Image: Image: The C(S) System Image: The C(S) System Image: Image: The C(S) System Image: The C(S) System Image: Image: Image: The C(S) System Image: The C(S) System Image: Image	Search function is available from the Auto Sequences® header line.
2	Q	Select Search in control panel to open Search setup menu.
3	Short code	The parameters that can be searched for are displayed in the Search setup menu.
3a	$ \begin{array}{c} \bullet \\ \hline \hline \hline \bullet \\ \hline \hline \hline \hline$	The search can be narrowed by entering a text in the Name and Short code fields. Strings can be entered by using the on-screen keyboard.
3 b	×	Clears all filters.
4	Q	Searches through the Auto Sequences® menu according to the set filters. The results are shown in the Search results screen presented on <i>Figure 8.2</i> and <i>Figure</i> <i>8.3.</i>

Figure 8.2: Search results screen – Page view

Options


>	Next page (if available).
<	Previous page (if available).

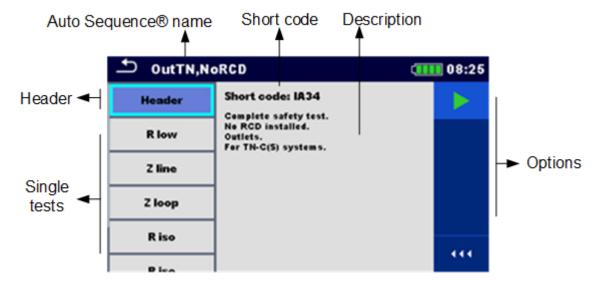
Note

• Search result page consist of up to 50 results.

Figure 8.3: Search results screen with Auto Sequences® selected

8.2 Organization of an Auto Sequence®

An Auto Sequence® is divided into three phases:

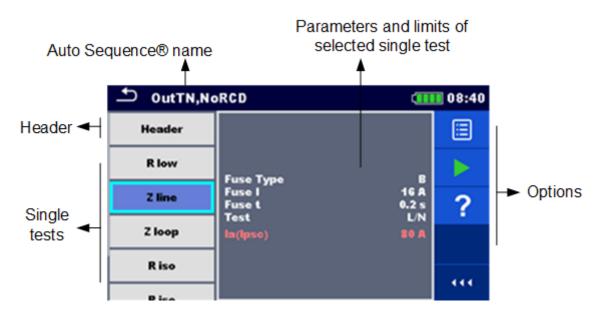

- Before starting the first test the Auto Sequence® view menu is shown (unless it was started directly from the Main Auto Sequences® menu). Parameters and limits of individual measurements can be set in this menu.
- During the execution phase of an Auto Sequence®, pre-programmed single tests are carried out.
- After the test sequence is finished the Auto Sequence® result menu is shown. Details of individual tests can be viewed and the results can be saved to Memory organizer.

8.2.1 Auto Sequences® view menu

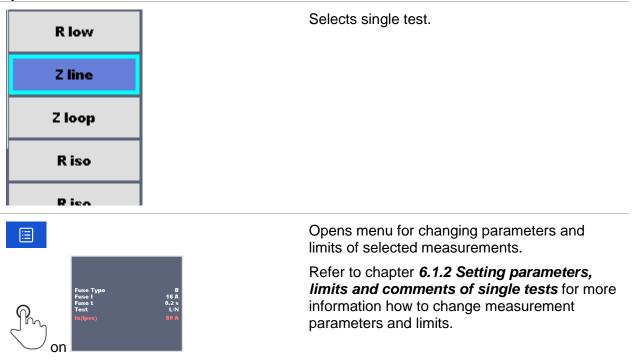
In the Auto Sequence® view menu, the header and the single tests of selected Auto Sequence® are displayed. The header contains Name, Short code and description of the Auto Sequence®. Before starting the Auto Sequence®, test parameters / limits of individual measurements can be changed.

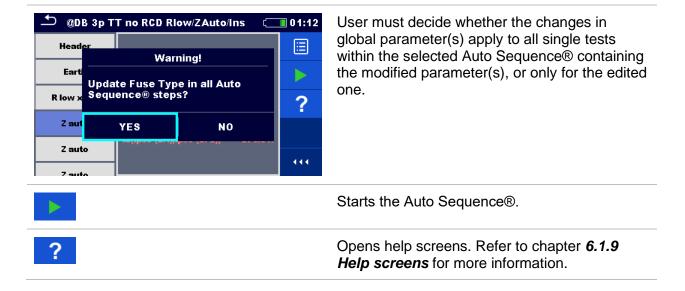
Note

 Once fuse and RCD parameters are changed in active Auto Sequence[®], the new settings are distributed through all single tests within active Auto Sequence[®] and stored for next use of same Auto Sequence[®].



8.2.1.1 Auto Sequence® view menu (Header is selected)




Starts the Auto Sequence®.

8.2.1.2 Auto Sequence® view menu (measurement is selected)

8.2.1.3 Indication of Loops

R iso x3

The attached 'x3' at the end of single test name indicates that a loop of single tests is programmed. This means that the marked single test will be carried out as many times as the number behind the 'x' indicates. It is possible to exit the loop before, at the end of each individual measurement.

8.2.2 Step by step execution of Auto Sequences®

While the Auto Sequence® is running it is controlled by pre-programmed flow commands. Examples are:

- pauses during the test sequence
- proceeding of test sequence in regard to measured results
- etc.

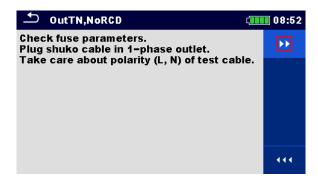
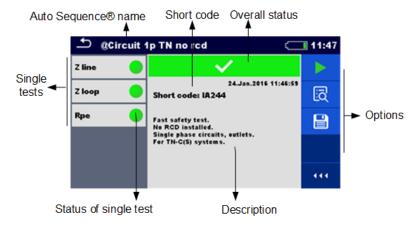



Figure 8.6: Auto Sequence® – Example of a pause with message

Figure 8.7: Auto Sequence® – Example of a finished measurement with options for proceeding

Options (during execution of an Auto Sequence®)


	Proceeds to next step in the test sequence.
Ċ	Repeats the measurement. Displayed result of a single test will not be stored.
	Ends the Auto Sequence® and goes to Auto Sequence® result screen. Refer to chapter 8.2.3 Auto Sequence ® result screen for more information.
Ý	Exits the loop of single tests and proceeds to the next step in the test sequence.

The offered options in the control panel depend on the selected single test, its result and the programmed test flow.

8.2.3 Auto Sequence® result screen

After the Auto Sequence® is finished the Auto Sequence® result screen is displayed. At the left side of the display the single tests and their statuses in the Auto Sequence® are shown.

In the middle of the display the header of the Auto Sequence® with Short code and description of the Auto Sequence® is displayed. At the top the overall Auto sequence result status is displayed. Refer to chapter **5.1.1 Measurement statuses** for more information.

Figure 8.8: Auto Sequence® result screen

Options

	Starts a new Auto Sequence®.
ā	View results of individual measurements. The instrument goes to menu for viewing details of the Auto Sequence®.
	Saves the Auto Sequence® results.
	A new Auto Sequence® was selected and started from a Structure object in the structure tree:
	 The Auto Sequence[®] will be saved under the selected Structure object.
	A new Auto Sequence® was started from the Auto Sequence® main menu:
	 Saving under the last selected Structure object will be offered by default. The user can select another Structure object or create a new Structure object. By pressing in Memory organizer menu the Auto Sequence® is saved under selected location.
	An empty measurement was selected in structure tree and started:
	 The result(s) will be added to the Auto Sequence[®]. The Auto Sequence[®] will change its overall status from 'empty' to 'finished'.
	An already carried out Auto Sequence® was selected in structure tree, viewed and then restarted:
	 A new Auto Sequence® will be saved under the selected Structure object.
	Adds comment to the Auto Sequence®. The instrument opens keypad for entering a comment.
Options	(menu for viewing details of Auto Sequence® results)

Details of selected single test in Auto Sequence® are displayed.

View parameters and limits of selected single test.

Adds comment to the selected single test in Auto Sequence®. The instrument opens keypad for entering a comment.

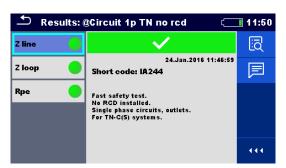


Figure 8.9: Details of menu for viewing details of Auto Sequence® results

Auto Sequence® memory screen 8.2.4

In Auto Sequence® memory screen details of the Auto Sequence® results can be viewed and a new Auto Sequence® can be restarted.

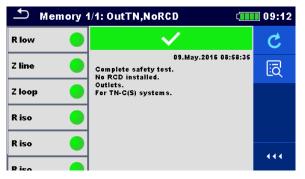


Figure 8.11: Auto Sequence® memory screen

9 Communication

The instrument can communicate with the Metrel ES Manager PC software and aMESM android application. The following action is supported:

- Saved results and Tree structure from Memory organizer can be downloaded and stored to a PC or android device.
- Tree structure from Metrel ES Manager PC software or aMESM android application can be uploaded to the instrument.

Metrel ES Manager is a PC software running on Windows 8.1, Windows 10 and Windows 11. There are three communication interfaces available on the instrument:

- RS-232
- USB
- Bluetooth.

Instrument can also communicate to various external devices (test adapters, scanners,...).

9.1 USB and RS232 communication

The instrument automatically selects the communication mode according to detected interface. USB interface has priority.

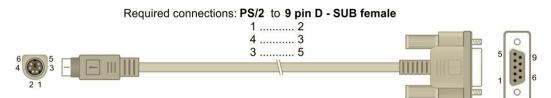


Figure 9.1: Interface connection for data transfer over PC COM port

How to establish an USB or RS-232 link:

- RS-232 communication: connect a PC COM port to the instrument PS/2 connector using the PS/2 - RS232 serial communication cable;
- USB communication: connect a PC USB port to the instrument USB connector using the USB interface cable.
- Switch on the PC and the instrument.
- Run the Metrel ES Manager software.
- Select communication port (COM port for USB communication is identified as 'Measurement Instrument USB VCom Port'.
- The instrument is prepared to communicate with the PC.

9.2 Bluetooth communication with Android devices

The internal Bluetooth module enables easy communication via Bluetooth with Android devices.

How to configure a Bluetooth link between instrument and Android device

Switch On the instrument.

- Some Android applications automatically carry out the setup of a Bluetooth connection. It is preferred to use this option if it exists. This option is supported by Metrel's Android applications.
- If this option is not supported by the selected Android application, then configure a Bluetooth link via Android device's Bluetooth configuration tool. Usually, no code for pairing the devices is needed.
- The instrument and Android device are ready to communicate.

Notes

- Sometimes there will be a demand from the Android device to enter the code. Enter code 'NNNN' to correctly configure the Bluetooth link.
- The name of correctly configured Bluetooth device must consist of the instrument type plus serial number, e.g. *MI 3152-12240429I*. If the Bluetooth module got another name, the configuration must be repeated.
- In case of serious troubles with the Bluetooth communication it is possible to reinitialize the internal Bluetooth module. The initialization is carried out during the Initial settings procedure. In case of a successful initialization "INITIALIZING... OK!" is displayed at the end of the procedure. See chapter 4.6.8 Initial Settings.
- Metrel android application aMESM is available for download from Google play store:

9.3 Communication with Adapters

EurotestXC can communicate with Metrel test and measurement adapters through wired RS232 port or wireless Bluetooth communication port.

Adapter can be selected from the list of adapters from *General Settings / Settings / Adapters* section menu, se Figure 9.2 below.

Settings		(17:4		
Load pretest		Ön	>	
External Device	<	Commander	>	
Adapters				
Adapter Type	<	MD 9273		
Port		Bluetooth		
Bluetooth device nan	ne	MD 9273		
Limits				

Figure 9.2: Adapters section menu

When Adapter is selected from the list, supported communication port is automatically offered. To establish Bluetooth communication, Adapter must be paired with EurotectXC.

Procedure:

1. Adapter: switch it ON and select BT mode, if not already automatically selected.

- 2. EurotestXC: Open General Settings / Settings menu and navigate to the Adapters section.
- 3. Adapter type: select Adapter by using left / right arrows or tap on the field and select it from the list of adapters.
- 4. **Port:** Bluetooth or RS232, which one is supported by the Adapter, is automatically offered. Connect serial cable or proceed with pairing procedure.
- 5. **Bluetooth device name:** select field and instrument start searching for Bluetooth devices; when finished, list of available devices is presented on the screen.
- 6. Select Adapter name from the list: pairing procedure is finished.

When test supported by the adapter is selected on EurotestXC, active BT communication is indicated with sign 3 on the right – top of the screen.

Note

 Pairing between same Metrel Adapter and same EurotestXC is necessary only when Adapter is first time used. If communication is not established when supported test is selected, Adapter is probably switched OFF or Bluetooth link is out of range.

9.4 Bluetooth and RS232 communication with scanners

EurotestXC instrument can communicate with supported Bluetooth and serial scanners. Serial scanner should be connected to the instrument's PS/2 serial port. Contact Metrel or your distributor which external devices and functionalities are supported. See chapter **4.6.6 Devices** for details how to set the external Bluetooth or serial device.

10 Upgrading the instrument

The instrument can be upgraded from a PC via the RS232 or USB communication port. This enables to keep the instrument up to date even if the standards or regulations change. The firmware upgrade requires internet access and can be carried out from the *Metrel ES Manager* software with a help of special upgrading software – *FlashMe* which will guide you through the upgrading procedure. For more information refer to Metrel ES Manager Help file.

11 Maintenance

Unauthorized persons are not allowed to open the EurotestXC instrument. There are no user replaceable components inside the instrument, except the battery and fuses under back cover.

11.1 Fuse replacement

There are three fuses under back cover of the EurotestXC instrument.

F1 M 0.315 A / 250 V, 20×5 mm

This fuse protects internal circuitry for continuity functions if test probes are connected to the mains supply voltage by mistake during measurement.

F2, F3 F 4 A / 500 V, 32×6.3 mm (breaking capacity: 50 kA)

General input protection fuses of test terminals L/L1 and N/L2.

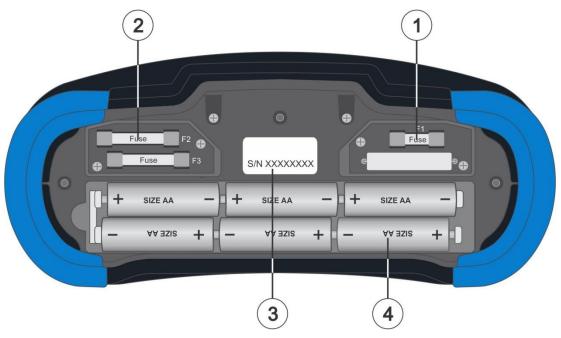


Figure 11.1: Fuses

Warnings!

- Switch off the instrument and disconnect all measuring accessory before opening battery / fuse compartment cover, hazardous voltage inside!
- Replace blown fuse with original type only, otherwise the instrument or accessory may be damaged and / or operator's safety impaired!

11.2 Cleaning

No special maintenance is required for the housing. To clean the surface of the instrument or accessory use a soft cloth slightly moistened with soapy water or alcohol. Then leave the instrument or accessory to dry totally before use.

Warnings!

- Do not use liquids based on petrol or hydrocarbons!
- Do not spill cleaning liquid over the instrument!

11.3 **Periodic calibration**

It is essential that the test instrument is regularly calibrated in order that the technical specification listed in this manual is guaranteed. We recommend an annual calibration. Only an authorized technical person can do the calibration. Please contact your dealer for further information.

11.4 Service

For repairs under warranty, or at any other time, please contact your distributor.

12 Technical specifications

12.1 R iso – Insulation resistance

Uiso: 50 V, 100 V and 250 V

Riso – Insulation resistance

Measuring range according to EN 61557 is 0.15 M Ω ... 199.9 M Ω .

Measuring range (M Ω)	Resolution (MΩ)	Accuracy
0.00 19.99	0.01	\pm (5 % of reading + 3 digits)
20.0 99.9	0.1	\pm (10 % of reading)
100.0 199.9	0.1	\pm (20 % of reading)

Uiso: 500 V

Riso – Insulation resistance

Measuring range according to EN 61557 is $0.15 \text{ M}\Omega \dots 999 \text{ M}\Omega$.

Measuring range (M Ω)	Resolution (MΩ)	Accuracy
0.00 19.99	0.01	\pm (5 % of reading + 3 digits)
20.0 199.9	0.1	\pm (5 % of reading)
200 999	1	\pm (10 % of reading)

Uiso: 1000 V

Riso – Insulation resistance

Measuring range according to EN 61557 is 0.15 M Ω ... 199.9 M Ω .

Measuring range (M Ω)	Resolution (M Ω)	Accuracy
0.00 19.99	0.01	\pm (5 % of reading + 3 digits)
20.0 199.9	0.1	\pm (5 % of reading)
200 999	1	indicative

Uiso: 2500V (MI 3152H only)

Riso – Insulation resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 M 19.99 M	0.01 M	\pm (5 % of reading + 3 digits)
20.0 M 199.9 M	0.1 M	±(5 % of reading)
200 M 999 M	1 M	±(10 % of reading)
1.00 G 19.99 G	0.01 G	±(10 % of reading)

Um – Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 2700	1	\pm (3 % of reading + 3 digits)

Nominal voltages Uiso	$50 V_{DC}$, 100 V_{DC} , 250 V_{DC} , 500 V_{DC} , 1000 V_{DC} ,
-	2500 V _{DC} (MI 3152H only)
Open circuit voltage	0 % / +20 % of nominal voltage
Measuring current	min. 1 mA at $R_N = U_N \times 1 \text{ k}\Omega/V$
Short circuit current	. max. 3 mA
Load pretest voltage	. < 20 V _{AC} , 125 Hz
Load pretest warning	. < 50 kΩ
The number of possible tests	. > 700, with a fully charged battery

Auto discharge after test.

Specified accuracy is valid if 3-wire test lead is used while it is valid up to 100 M Ω if Tip commander is used.

Specified accuracy is valid up to 100 M Ω if relative humidity is > 85 %.

In case the instrument gets moistened, the results could be impaired. In such case, it is recommended to dry the instrument and accessories for at least 24 hours.

The error in operating conditions could be at most the error for reference conditions (specified in the manual for each function) ± 5 % of measured value.

12.2 Diagnostic test (MI 3152H only)

Uiso: 500V, 1000 V, 2500 V

DAR – Dielectric absorption ratio

Measuring range	easuring range Resolution				
0.01 9.99	0.01	\pm (5 % of reading + 2 digits)			
10.0 100.0	0.1	\pm (5 % of reading)			

PI – Polarization index

Measuring range	Resolution	Accuracy
0.01 9.99	0.01	\pm (5 % of reading + 2 digits)
10.0 100.0	0.1	\pm (5 % of reading)

For **Riso**, **R60**, and **Um** sub-results technical specifications defined in chapter **12.1** *R* **iso** – **Insulation resistance** apply.

12.3 R low – Resistance of earth connection and equipotential bonding

Measuring range according to EN 61557 is 0.16 Ω ... 1999 Ω .

R – Resistance	R –	Resistance
----------------	-----	------------

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 19.99	0.01	\pm (3 % of reading + 3 digits)
20.0 199.9	0.1	\downarrow (E 0(of roading)
200 1999	1	\pm ±(5 % of reading)

R+, R – Resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.0 199.9	0.1	(E) (of roading , E digita)
200 1999	1	\pm (5 % of reading + 5 digits)

Automatic polarity reversal of the test voltage.

12.4 Continuity – Continuous resistance measurement with low current

R – Continuity resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.0 19.9	0.1	(E) (of reading , 10 digita)
20 1999	1	\pm (5 % of reading + 10 digits)

12.5 RCD testing

General data

	10 mA, 15 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA
Nominal residual current accuracy	0 / +0.1· $I\Delta$; $I\Delta = I\Delta N$, 2×I ΔN , 5×I ΔN -0.1· $I\Delta$ / +0; $I\Delta = 0.5 \times I\Delta N$ AS/NZS 3017 selected: ± 5 %
Sensitivity parameter supported	PRCD, PRCD-3p, PRCD-S+, PRCD-K
Nominal residual current accuracy by us	ing parameter Sensitivity:
Sensitivity: standard	
	-0.1·I∆ / +0; I∆ = 0.5×I∆N
Sensitivity: Ipe monitoring	0 / +0.1·I Δ ; I Δ = 0.5×I Δ N, 2×0.5×I Δ N, 5×0.5×I Δ N
	$-0.1 \cdot I\Delta / +0; I\Delta = 0.5 \times 0.5 \times I\Delta N$
	AS/NZS 3017 selected: ± 5 %
	.Sine-wave (AC), pulsed (A, F), smooth DC (B, B+)
DC offset for pulsed test current	
RCD type	.(non-delayed), S (time-delayed), PRCD, PRCD-2p, PRCD-3p, PRCD-S, PRCD-S+, PRCD-K, EV RCD, EV
	RCM, MI RCD
Test current starting polarity	. 0° or 180°
Voltage range	93 V 134 V (45 Hz 65 Hz)
	185 V 266 V (45 Hz 65 Hz)

RCD test current in relation to RCD type, nominal RCD current and multiplication factor

	I _{∆N} × 1/2 (mA)		I _{∆N} × 1 (mA)		I _{∆N} × 2 (mA)			I _{∆N} × 5 (mA)			RCD I∆				
I _{∆N} (mA)	AC	Á, F	В, В+	AC	A, F	В, В+	AC	A, F	В, В+	AC	A, F	В, В+	AC	A, F	В, В+
10	5	3.5	5	10	20	20	20	40	40	50	100	100	✓	✓	\checkmark
15	7.5	5.3	7.5	15	30	30	30	60	60	75	150	150	✓	✓	\checkmark
30	15	10.5	15	30	42	60	60	84	120	150	212	300	✓	~	✓
100	50	35	50	100	141	200	200	282	400	500	707	1000	✓	✓	√
300	150	105	150	300	424	600	600	848	×	1500	×	×	\checkmark	\checkmark	\checkmark
500	250	175	250	500	707	1000	1000	1410	×	2500	×	×	\checkmark	\checkmark	\checkmark

			r									1			r	
ļ	1000	500	350	500	1000	1410	×	2000	×	×	×	×	×	\checkmark	\checkmark	×

×	not applicable
✓	
AC type	sine wave test current
A, F types	pulsed current
B, B+ types	smooth DC current (MI 3152 only)

RCD test current in relation to MI / EV RCD type and multiplication factor

	$I_{\Delta N} \times 1/2$	$I_{\Delta N} \times 1$	$I_{\Delta N} \times 2$	$I_{\Delta N} \times 5$	$I_{\Delta N} \times 10$	$I_{\Delta N} \times 33.33$	$I_{\Delta N} \times 50$	RC	D I∆
	(mA)	(mA)	(mA)	(mA)	(mA)	(mA)	(mA)		
$I_{\Delta N}$	MI / EV	MI / EV	MI/EV	MI / EV	MI / EV	MI / EV	MI / EV	MI / EV	MI / EV
(mA)	a.c., d.c.	a.c., d.c.	a.c.	a.c.	d.c.	d.c.	d.c.	a.c.	d.c.
· · /						(IEC 62955)	(IEC 62752)		
30	15	30	60	150	×	×	×	\checkmark	×
a.c.									
6	3	6	×	×	60	200	300	×	✓
d.c.									

×	not applicable
✓	
MI / EV types (a.c. part)	sine-wave test current
MI / EV types (d.c. part)	smooth DC current

12.5.1 RCD Uc – Contact voltage

Measuring range according to EN 61557 is 20.0 V ... 31.0 V for limit contact voltage 25 V Measuring range according to EN 61557 is 20.0 V ... 62.0 V for limit contact voltage 50 V

Uc – Contact voltage

Measuring range (V)	Resolution (V)	Accuracy
0.0 19.9	0.1	(-0 % / +15 %) of reading ± 10 digits
20.0 99.9	0.1	(-0 % / +15 %) of reading

The accuracy is valid if mains voltage is stabile during the measurement and PE terminal is free of interfering voltages. Specified accuracy is valid for complete operating range.

Test current max. $0.5 \times I_{\Delta N}$ Limit contact voltage Custom, 12 V, 25 V, 50 V

12.5.2 RCD t – Trip-out time

Complete measurement range corresponds to EN 61557 requirements. Maximum measuring times set according to selected reference for RCD testing.

t ∆N –Trip-out time

Measuring range (ms)	Resolution (ms)	Accuracy
0.0 max. time*	0.1	±3 ms

* For max. time see normative references in chapter 4.6.5.2 RCD standard.

12.5.3 RCD I – Trip-out current

Complete measurement range corresponds to EN 61557 requirements.

I∆ – Trip-out current

Measuring range	Resolution I _∆	Accuracy
0.2×I _{∆N} 1.1×I _{∆N} (AC type)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
0.2×I _{∆N} 1.0×I _{∆N} (IEC 62752: EV RCD, EV RCM, MI RCD (a.c. part))	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
0.2×I _{∆N_d.c.} 1.0×I _{∆N_d.c.} (IEC 62752: EV RCD, EV RCM, MI RCD (d.c. part))	$0.05 \times I_{\Delta N_d.c.}$	$\pm 0.1 \times I_{\Delta N_d.c.}$
0.2×I∆N 1.0×I∆N (IEC 62955: EV RCD, EV RCM, MI RCD (a.c. part))	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
0.2×I _{∆N_d.c} 1.0×I _{∆N_d.c} (IEC 62955: EV RCD, EV RCM, MI RCD (d.c. part))	$0.05 \times I_{\Delta N_d.c.}$	$\pm 0.1 \times I_{\Delta N_d.c.}$
0.2×I _{∆N} 1.5×I _{∆N} (A type, I _{∆N} ≥30 mA)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
$0.2 \times I_{\Delta N} \dots 2.2 \times I_{\Delta N}$ (A type, I_{\Delta N} < 30 mA)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
0.2×I _{ΔN} 2.2×I _{ΔN} (B type)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$

t I∆ – Trip out-time

Measuring range (ms)	Resolution (ms)	Accuracy
0 300	1	±3 ms

Uc, Uc I∆ – Contact voltage

Measuring range (V)	Resolution (V)	Accuracy
0.0 19.9	0.1	(-0 % / +15 %) of reading \pm 10 digits
20.0 99.9	0.1	(-0 % / +15 %) of reading

Limit contact voltage (Uc, Uc IA)..... Custom, 12 V, 25 V, 50 V

The accuracy is valid if mains voltage is stabile during the measurement and PE terminal is free of interfering voltages. Specified accuracy is valid for complete operating range. Trip-out measurement is not available for $I_{\Delta N}$ =1000 mA (RCD types B, B+).

12.6 RCD Auto

Refer to chapter 12.5 RCD testing for technical specification of individual RCD tests.

12.7 Z loop – Fault loop impedance and prospective fault current

Z – Fault loop impedance

Measuring range according to EN 61557 is $0.25 \Omega \dots 9.99 k\Omega$.

Measuring range (Ω)	Resolution (Ω)	Accuracy	
0.00 9.99	0.01	(E) (of roading , E digita)	
10.0 99.9	0.1	\pm (5 % of reading + 5 digits)	
100 999	1	10.9% of reading	
1.00 k 9.99 k	10	± 10 % of reading	

Ipsc – Prospective fault current

Measuring range (A)	Resolution (A)	Accuracy
0.00 9.99	0.01	
10.0 99.9	0.1	
100 999	1	Consider accuracy of fault
1.00 k 9.99 k	10	 loop resistance measurement
10.0 k 23.0 k	100	

Ulpe – Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 550	1	\pm (2 % of reading + 2 digits)

The accuracy is valid if mains voltage is stabile during the measurement.

Test current (at 230 V)	. 6.5 A (10 ms)
Nominal voltage range	. 93 V 134 V (45 Hz 65 Hz)
	185 V 266 V (45 Hz 65 Hz)

R, X_L values are indicative.

12.8 Zs rcd – Fault loop impedance and prospective fault current in system with RCD

Z – Fault loop impedance

Measuring range according to EN 61557 is 0.46 Ω ... 9.99 k Ω for I test = standard and 0.48 Ω ... 9.99 k Ω for I test = low.

Measuring range (Ω)	Resolution (Ω)	Accuracy I test = standard	Accuracy I test = low
0.00 9.99	0.01	\pm (5 % of reading + 10	\pm (5 % of reading + 12
10.0 99.9	0.1	digits)	digits)
100 999	1	$\downarrow 10.\%$ of roading	10% of reading
1.00 k 9.99 k	10	\pm 10 % of reading	\pm 10 % of reading

Accuracy may be impaired in case of heavy noise on mains voltage.

Ipsc – Prospective fault current

Measuring range (A)	Resolution (A)	Accuracy
0.00 9.99	0.01	Consider accuracy of fault
10.0 99.9	0.1	loop resistance measurement

100 999	1
1.00 k 9.99 k	10
10.0 k 23.0 k	100

Ulpe – Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 550	1	\pm (2 % of reading + 2 digits)

Uc – Contact voltage

Refer to chapter 12.5.1 RCD Uc - Contact voltage for detailed technical specification.

12.9 Z loop m Ω – High precision fault loop impedance and prospective fault current

This test is performed in combination with an external test adapter / instrument. For technical specification refer to A 1143 Euro Z 290 A, MI 3143 Euro Z 440 V and MI 3144 Euro Z 800 V Instruction manual.

12.10 U touch – Touch voltage (MI 3143 and MI 3144)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to *MI 3143 Euro Z 440 V* and *MI 3144 Euro Z 800 V Instruction manual.*

12.11 Z line – Line impedance and prospective shortcircuit current

Z – Line impedance

Measuring range according to EN 61557 is $0.25 \Omega \dots 9.99 k\Omega$.

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 9.99	0.01	(E) (of roading , E digita)
10.0 99.9	0.1	\pm (5 % of reading + 5 digits)
100 999	1	10% of roading
1.00 k 9.99 k	10	± 10 % of reading

Ipsc – prospective short-circuit current

Imax – Maximal single-phase prospective short-circuit current

Imax2p – Maximal two-phases prospective short-circuit current

Imax3p – Maximal three-phases prospective short-circuit current

Measuring range (A)	Resolution (A)	Accuracy
0.00 0.99	0.01	Consider accuracy of line
1.0 99.9	0.1	resistance measurement

100 999	1
1.00 k 99.99 k	10
100 k 199 k	1000

Uln – Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 550	1	\pm (2 % of reading + 2 digits)

R, X_L, Imin, Imin2p, Imin3p values are indicative.

12.12 Z line $m\Omega$ – High precision line impedance and prospective short-circuit current

This test is performed in combination with an external test adapter / instrument. For technical specification refer to A 1143 Euro Z 290 A, MI 3143 Euro Z 440 V and MI 3144 Euro Z 800 V Instruction manual.

12.13 High current (MI 3143 and MI 3144)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to *MI 3143 Euro Z 440 V* and *MI 3144 Euro Z 800 V Instruction manual.*

12.14 Voltage Drop

ΔU – Voltage drop

Measuring range (%)	Resolution (%)	Accuracy
0.0 99.9	0.1	Consider accuracy of line impedance measurement(s)*

Uln, Ipsc, Zref, Z

Refer to chapter **12.11 Z line – Line impedance and prospective short-circuit current** for technical specification.

 Z_{REF} measuring range 0.00 Ω ... 20.0 Ω

Test current (at 230 V)	6.5 A (10 ms)
Nominal voltage range	93 V 134 V (45 Hz 65 Hz)
	185 V 266 V (45 Hz 65 Hz)
	321 V 485 V (45 Hz 65 Hz)

*See chapter **7.15 Voltage Drop** for more information about calculation of voltage drop result.

12.15 Z auto, AUTO TT, AUTO TN, AUTO TN (RCD), AUTO IT

Refer to chapters listed below for detailed technical specification:

12.5.1 RCD Uc – Contact voltage,

12.7 Z loop – Fault loop impedance and prospective fault current,

12.8 Zs rcd – Fault loop impedance and prospective fault current in system with RCD,

12.11 Z line – Line impedance and prospective short-circuit current,

12.14 Voltage Drop,

12.16 Rpe – PE conductor resistance,

12.26 ISFL - First fault leakage current (MI 3152 only) and

12.27 IMD (MI 3152 only),

12.16 Rpe – PE conductor resistance

RCD: No

R – PE conductor resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 19.99	0.01	(E %) of roading (E digita)
20.0 99.9	0.1	\pm (5 % of reading + 5 digits)
100.0 199.9	0.1	10.9% of reading
200 1999	1	- ± 10 % of reading

Measuring current......min. 200 mA into PE resistance of 2 Ω

RCD: Yes, no trip out of RCD R – PE conductor resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 19.99	0.01	(E. 9) of reading 1. 10 digita)
20.0 99.9	0.1	\pm (5 % of reading + 10 digits)
100.0 199.9	0.1	10.9% of reading
200 1999	1	- ± 10 % of reading

Accuracy may be impaired in case of heavy noise on mains voltage.

Measuring current..... < 15 mA

12.17 Earth – Earth resistance (3-wire measurement)

Re – Earth resistance

Measuring range according to EN61557-5 is $0.20 \Omega \dots 1999 \Omega$.

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 19.99	0.01	
20.0 199.9	0.1	\pm (5 % of reading + 5 digits)
200 9999	1	

Max. auxiliary earth electrode resistance R_c100× R_E or 50 k Ω (whichever is lower) Max. probe resistance R_P100× R_E or 50 k Ω (whichever is lower)

Rc and Rp values are indicative.

Additional probe resistance error at R_{Cmax} or R_{Pmax} . $\pm(10 \% \text{ of reading + 10 digits})$

Additional error at 3 V voltage noise (50 Hz)	$\dots \pm (5 \% \text{ of reading + 10 digits})$
Open circuit voltage	< 30 VAC
Short circuit current	< 30 mA
Test voltage frequency	125 Hz
Test voltage shape	sine wave
Noise voltage indication threshold	1 V (< 50 Ω , worst case)

Automatic measurement of auxiliary electrode resistance and probe resistance. Automatic measurement of voltage noise.

12.18 Earth 2 clamp – Contactless earthing resistance measurement (with two current clamps)

Re – Earth resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy ^{*)}	
0.00 19.99	0.01	\pm (10 % of reading + 10 digits)	
20.0 30.0	0.1	\pm (20 % of reading)	
30.1 39.9	0.1	\pm (30 % of reading)	

^{*)} Distance between current clamps > 30 cm.

12.19 Ro – Specific earth resistance

ρ – Specific earth resistance

- 1					
	Measuring range (Ω m)	Resolution (Ωm)	Accuracy		
	0.0 99.9	0.1			
	100 999	1			
	1.00 k 9.99 k	0.01 k	See accuracy note		
	10.0 k 99.9 k	0.1 k			
	100 k 9999 k	1 k			

ρ – Specific earth resistance

- ' e					
	Measuring range (Ω ft)	Resolution (Ωft)	Accuracy		
ſ	0.0 99.9	0.1			
ſ	100 999	1			
ſ	1.00 k 9.99 k	0.01 k	See accuracy note		
ſ	10.0 k 99.9 k	0.1 k	-		
ſ	100 k 9999 k	1 k			

Principle:

 $\rho = 2 \cdot \pi \cdot d \cdot Re,$

where Re is a measured resistance in 4-wire method and d is distance between the probes.

Accuracy note:

Accuracy of the specific earth resistance result depends on measured earth resistance Re as follows:

Re – Earth resistance

Measuring range (Ω)	Accuracy
1.00 1999	± 5 % of measured value
2000 19.99 k	± 10 % of measured value
>20 k	± 20 % of measured value

Rc and Rp values are indicative.

Additional error: See Earth resistance three-wire method.

12.20 Voltage, frequency, and phase rotation

12.20.1 Phase rotation

Nominal system voltage range	100 V _{AC} 550 V _{AC}
Nominal frequency range	14 Hz 500 Hz
Result displayed	1.2.3 or 3.2.1

12.20.2 Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 550	1	\pm (2 % of reading + 2 digits)

Result type True r.m.s. (TRMS) Nominal frequency range...... 0 Hz, 14 Hz ... 500 Hz

12.20.3 Frequency

Measuring range (Hz)	Resolution (Hz)	Accuracy
0.00 9.99	0.01	(0.2.% of reading 1.1 digit)
10.0 499.9	0.1	\pm (0.2 % of reading + 1 digit)

Nominal voltage range...... 20 V ... 550 V

12.20.4 Online terminal voltage monitor

Measuring range (V)	Resolution (V)	Accuracy
10 550	1	\pm (2 % of reading + 2 digits)

12.21 Currents

Instrument Maximum voltage on C1 measuring input......3 V Nominal frequency......0 Hz, 40 Hz ... 500 Hz

Ch1 clamp type: A1018

-	-	-		,
Ran	20	-	20	Δ
Nan	yc		20	~
11 _	C 1	ır	ro	ht.

Measuring range (A)	Resolution (A)	Accuracy*	
0.0 m 99.9 m	0.1 m	\pm (5 % of reading + 5 digits)	
100 m 999 m	1 m	\pm (3 % of reading + 3 digits)	
1.00 19.99	0.01	\pm (3 % of reading)	

Ch1 clamp type: A1391

Range: 40 A

11	-	Cu	rre	ent	

Measuring range (A) Resolution (A)		Accuracy*
0.00 1.99	0.01	\pm (3 % of reading + 3 digits)
2.00 19.99	0.01	\pm (3 % of reading)
20.0 39.9	0.1	\pm (3 % of reading)

Ch1 clamp type: A1391 Range: 300 A

I1 – Current

n Ganan		
Measuring range (A)	Resolution (A)	Accuracy*
0.00 19.99	0.01	indicative
20.0 39.9	0.1	
40.0 299.9	0.1	\pm (3 % of reading + 5 digits)

* Accuracy at operating conditions for instrument and current clamp is given.

12.22 Current clamp meter (MI 3144)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to *MI 3144 Euro Z 800 V Instruction manual.*

12.23 Power

Measurement characteristics

Function symbols	Class according to IEC 61557-12	Measuring range
P – Active power	2.5	5 % 100 % I _{Nom} *)
S – Apparent power	2.5	5 % 100 % I _{Nom} *)
Q – Reactive power	2.5	5 % 100 % I _{Nom} *)
PF – Power factor	1	- 1 1
THDu	2.5	0 % 20 % U _{Nom}

 $^{\ast)}$ I_{Nom} depends on selected current clamp type and selected range as follows:

A 1018: [20 A]

A 1391: [40 A, 300 A]

Function	Measuring range
Power (P, S, Q)	0.00 W (VA, Var) 99.9 kW (kVA, kVar)
Power factor	-1.00 1.00
Voltage THD	0.1 % 99.9 %

Error of external voltage and current transducers is not considered in this specification.

12.24 Harmonics

Measurement characteristics

Function symbols	Class according to IEC 61557-12	Measuring range
Uh	2.5	0 % 20 % U _{Nom}
THDu	2.5	0 % 20 % U _{Nom}
lh	2.5	0 % 100 % I _{Nom} *)
THDi	2.5	0 % 100 % I _{Nom} *)

 $^{*)}$ I_{Nom} depends on selected current clamp type and selected range as follows: A 1018:[20 A]

A 1391: [40 A, 300 A]

Function	Measuring range
Voltage harmonics	0.1 V 500 V
Voltage THD	0.1 % 99.9 %
Current harmonics and Current THD	0.00 A 199.9 A

Error of external voltage and current transducers is not considered in this specification.

12.25 Varistor test

Udc – DC Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 1000 (2500)*	1	\pm (3 % of reading + 3 digits)

Uac – AC voltage

	Measuring range (V)	Resolution (V)	Accuracy
	0 625 (1562)*	1	Consider accuracy of Udc
×	MI 3152H only		

12.26 ISFL – First fault leakage current (MI 3152 only)

Isc1, Isc2 – First fault leakage current		
Measuring range (mA)	Resolution (mA)	Accuracy
0.0 19.9	0.1	±(5 % of reading + 3 digits)

Measuring resistance	approx. 390 Ω
Nominal voltage ranges	
	$185~V \leq U_{L1-L2} \leq 266~V$

12.27 IMD (MI 3152 only)

R1, R2 – Threshold insulation resistance

<u></u> ,			
	R (kΩ)	Resolution (kΩ)	Note
	5 640	5	up to 128 steps

I1, **I2** – First fault leakage current at threshold insulation resistance

l (mA)	Resolution (mA)	Note
0.0 19.9	0.1	calculated value*)

t1, t2 - Activation / disconnection time of IMD

t1, t2 (s)	Resolution (s)	Accuracy
0.00 19.99	0.01	± 0.02 s
20.0 99.9	0.1	± 0.1 s

*)See chapter **7.25 IMD – Testing of insulation monitoring devices (MI 3152 only)** for more information about calculation of first fault leakage current at threshold insulation resistance.

12.28 Illumination

Illumination (A 1172)

Specified accuracy is valid for complete operating range.

	Measuring range (lux)	Resolution (lux)	Accuracy
ſ	0.01 19.99	0.01	\pm (5 % of reading + 2 digits)
	20.0 199.9	0.1	
	200 1999	1	\pm (5 % of reading)
	2.00 19.99 k	10	

Measurement principlesilicon photodiode with V(λ) filter Spectral response error< 3.8 % according to CIE curve Cosine error.....< 2.5 % up to an incident angle of ± 85° Overall accuracy.....matched to DIN 5032 class B standard

Illumination (A 1173)

Specified accuracy is valid for complete operating range.

Measuring range (lux)	Resolution (lux)	Accuracy
0.01 19.99	0.01	\pm (10 % of reading + 3 digits)
20.0 199.9	0.1	
200 1999	1	\pm (10 % of reading)
2.00 19.99 k	10	

Measurement principlesilicon photodiode

Cosine error	.< 2.5 % up to an incident angle of \pm 85°
Overall accuracy	.matched to DIN 5032 class C standard

12.29 Auto Sequences®

Refer to each individual test (measurement) for detailed technical specification.

12.30 R line mΩ - DC resistance measurement (MI 3144)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to *MI 3144 Euro Z 800 V Instruction manual*.

12.31 ELR Current Injection Test (MI 3144)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to *MI 3144 Euro Z 800 V Instruction manual.*

12.32 ELR Combination Time Test (MI 3144)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to *MI 3144 Euro Z 800 V Instruction manual*.

12.33 EVSE Diagnostic Test (A 1632)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to **A 1632 eMobility Analyser Instruction manual.**

12.34 Power CLAMP (MD 9273)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to **MD 9273 Leakage Clamp meter with Bluetooth® Communication Instruction manual.**

12.35 Voltage CLAMP (MD 9273)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to **MD 9273 Leakage Clamp meter with Bluetooth® Communication Instruction manual.**

12.36 Current CLAMP (MD 9273)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to **MD 9273 Leakage Clamp meter with Bluetooth® Communication Instruction manual.**

12.37 Inrush CLAMP (MD 9273)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to **MD 9273 Leakage Clamp meter with Bluetooth® Communication Instruction manual.**

12.38 Harmonics U CLAMP (MD 9273)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to **MD 9273 Leakage Clamp meter with Bluetooth® Communication Instruction manual.**

12.39 Harmonics I CLAMP (MD 9273)

This test is performed in combination with an external test adapter / instrument. For technical specification refer to **MD 9273 Leakage Clamp meter with Bluetooth® Communication Instruction manual.**

12.40 General data

Power supply Operation	6 x 1.2 V Ni-MH battery cells, size AA typical 9 h
Charger socket input voltage Charger socket input current Battery charging current	1000 mA max. 125 mA (normal charging mode)
Measuring category Protection classification	300 V CAT IV double insulation
Pollution degree Protection degree Altitude	IP 40
Display	4.3 inch (10.9 cm) 480x272 pixels TFT colour display with touch screen
Dimensions (w \times h \times d) Weight	
Reference conditions Reference temperature range Reference humidity range	
Operation conditions Working temperature range Maximum relative humidity Operation	95 %RH (0 °C 40 °C), non-condensing
Storage conditions Temperature range Maximum relative humidity	
Locator Locator Maximum operation voltage	
USB	115200 bits/s, 8N1 serial protocol USB 2.0 Hi speed interface with USB type B receptacle connector
Data storage capacity Bluetooth module	8 GB internal memory
EMC Emission Immunity	Class B Basic electromagnetic environment (Portable test and measurement equipment)
	ould be at most the error for reference conditions (specified in 6 of measured value + 1 digit, unless otherwise specified in

the manual for particular function.

Appendix A – Profile Notes

Instrument supports working with multiple Profiles. This appendix contains collection of minor modifications related to particular country requirements. Some of the modifications mean modified listed function characteristics related to main chapters and others are additional functions. Some minor modifications are related also to different requirements of the same market that are covered by various suppliers.

A.1 Profile Austria (ALAJ)

Testing special delayed G type RCD supported.

Modifications in chapter 7.7 Testing RCDs.

Special delayed G type RCD selection added in the **Selectivity** parameter in **Test Parameters / Limits** section as follows:

Selectivity Characteristic [--, S, G]

Time limits are the same as for general type RCD and contact voltage is calculated the same as for general type RCD.

Selective (time delayed) RCDs and RCDs with (G) - time delayed characteristic demonstrate delayed response characteristics. They contain residual current integrating mechanism for generation of delayed trip out. However, contact voltage pre-test in the measuring procedure also influences the RCD and it takes a period to recover into idle state. Time delay of 30 s is inserted before performing trip-out test to recover S type RCD after pre-tests and time delay of 5 s is inserted for the same purpose for G type RCD.

RCD type		Contact voltage Uc proportional to	Rated $I_{\Delta N}$	Notes
AC, EV, MI (a.c. part)	 G	$1.05 \times I_{\Delta N}$	any	
AC	S	2×1.05×Ι _{ΔΝ}		
A, F	 G	$1.4 \times 1.05 \times I_{\Delta N}$	≥ 30 mA	All models
A, F	S	2×1.4×1.05×I _{∆N}		
A, F	 G	$2 \times 1.05 \times I_{\Delta N}$	< 30 mA	
A, F	S	$2 \times 2 \times 1.05 \times I_{\Delta N}$		
B, B+		2×1.05×Ι _{ΔΝ}	any	Model MI 3152
B, B+	S	$2 \times 2 \times 1.05 \times I_{\Delta N}$		only

*Table 7.1: Relation between Uc and I*_{ΔN} changed as follows:

Technical specifications unchanged.

A.2 Profile Hungary (profile code ALAD)

Fuse type gR added to the fuse tables. Refer to *Fuse tables guide* for detailed information on fuse data.

New Single test function Visual Test added.

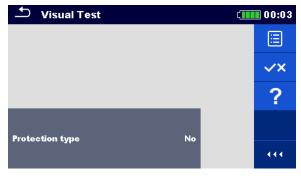


Figure A.1: Visual Test menu

Measurement parameters / limits

Protection type	Protection type [No, Automatic disconnection, Class II,
	Electrical separation, SELV, PELV]

Measurement procedure

- Enter the Visual Test function.
- Set test parameters / limits.
- Perform the visual inspection on tested object.
 - Use to select PASS / FAIL / NO STATUS indication.
 - Save results (optional).

Figure A.2: Examples of Visual Test result

Modifications in chapter 7.8 RCD Auto – RCD Auto test

Added tests with multiplication factor 2.

Modification of RCD Auto test procedure

CD Auto test inserted steps		Notes		
Re-activate RCD.				
Test with $2 \times I_{\Delta N}$, (+) positive po	plarity (new step 5).	RCD sh	ould trip-out	
Re-activate RCD.				
Test with $2 \times I_{\Delta N}$, (-) negative po	plarity (new step 6).	RCD sh	ould trip-out	
	<u> </u>			
🗂 RCD Auto	💷 05:33 🖆 R	CD Auto		(05:
(+) (-) t IAN d.c. x1586.9 ms 512.2 ms	t IAN d.	(+) c. x1586.9 ms	€) 512.2 ms	
t IAN x1 19.1 ms 19.5 ms	t IAN x*		19.5 ms	
t IAN x2 9.3 ms ms	t IΔN x3		9.0 ms	
tIAN x5 ms ms	t IAN x		ms	
t IAN x0.5 ms ms IA mA mA	t IAN x0).5 ms mA	ms mÅ	
IA d.c. mA mA	IA d.e.	mA	mA	
	Uc	0.1 v		
Use other	Use		other	
Гуре EVRCD L р	ре N Туре	E١	RCD L PE	N
AN / I AN d.c. 30 mA / 6 mA d.c. 🛛 😾 🔍 🗩 🎜	• 5 9 444 ΙΔΝ/ΙΔ	ΔNd.c. 30 mA/6 m.		4 9 11

Inserted new Step 5

Inserted new Step 6

Figure A.3: Example of individual steps in RCD Auto test - Inserted 2 new steps

Test results / sub-results	
----------------------------	--

t I∆N d.c. x1, (+) ¹⁾	Step 1 trip-out time ($I_{\Delta}=I_{\Delta N \text{ d.c.}}$, (+) positive polarity)
t I∆N d.c. x1, (-) ¹⁾	Step 2 trip-out time ($I_{\Delta}=I_{\Delta N \text{ d.c.}}$, (-) negative polarity)
t I∆N x1 (+)	Step 3 trip-out time ($I_{\Delta}=I_{\Delta N}$, (+) positive polarity) Non-operating time for a.c. current (IEC 62955).
t I∆N x1 (-)	Step 4 trip-out time ($I_{\Delta}=I_{\Delta N}$, (-) negative polarity) Non-operating time for a.c. current (IEC 62955).
t I∆N x2 (+)	Step 5 trip-out time ($I_{\Delta}=2 \times I_{\Delta N}$, (+) positive polarity)
t I∆N x2 (-)	Step 6 trip-out time ($I_{\Delta}=2 \times I_{\Delta N}$, (-) negative polarity)
t I∆N x5 (+)	Step 7 trip-out time (I_{Δ} =5× $I_{\Delta N}$, (+) positive polarity)
t I∆N x5 (-)	Step 8 trip-out time ($I_{\Delta}=5 \times I_{\Delta N}$, (-) negative polarity)
t I∆N x0.5 (+)	Step 9 trip-out time ($I_{\Delta}=\frac{1}{2} \times I_{\Delta N}$, (+) positive polarity)
t I∆N x0.5 (-)	Step 10 trip-out time ($I_{\Delta}=\frac{1}{2}\times I_{\Delta N}$, (-) negative polarity)
I∆ (+)	Step 11 trip-out current ((+) positive polarity)
I∆ (-)	Step 12 trip-out current ((-) negative polarity)
l∆ d.c. (+)	Step 13 trip-out current ((+) positive polarity) ¹⁾
l∆ d,c, (-)	Step 14 trip-out current ((-) negative polarity) ¹⁾
Uc	Contact voltage for rated $I_{\Delta N}$

¹⁾ Result is displayed only when parameter Use is set to 'other' and parameter Type to 'EV RCD', 'EV RCM' or 'MI RCD'.

A.3 Profile Finland (profile code ALAC)

la(lpsc) limit modified in fuse types gG, NV, B, C, D and K. Refer to *Fuse tables guide* for detailed information on fuse data.

A.4 Profile France (profile code ALAG)

Modifications in chapters:

7.7 Testing RCDs; 7.10 Zs rcd – Fault loop impedance and prospective fault current in system with RCD; 7.28 AUTO TT – Auto test for TT earthing system; 7.32 Z auto - Auto test for fast line and loop testing.

650 mA added in the I ΔN parameter in Test Parameters / Limits section as follows:

I ΔN Rated RCD residual current sensitivity [10 mA, 15 mA, 30 mA, 100 mA, 300 mA, 500 mA, 650 mA, 1000 mA]

Modifications in chapter 12.5 RCD testing

Nominal residual current (A,AC)10 mA, 15 mA, 30 mA, 100 mA, 300 mA, 500 mA, 650 mA, 1000 mA

RCD test current in relation to RCD type, nominal RCD current and multiplication factor

		I _{∆N} × 1/ (mA)	2		$I_{\Delta N} \times 1$ (mA)			I _{ΔN} × 2 (mA)			I _{∆N} ×	5		RCD	lΔ
I _{∆N} (mA)	AC	À, F	В, В+	AC	A, F	В, В+	AC	A, F	В, В+	AC	A, F	В, В+	AC	A, F	В, В+
10	5	3.5	5	10	20	20	20	40	40	50	100	100	✓	✓	\checkmark
15	7.5	5.3	7.5	15	30	30	30	60	60	75	150	150	✓	✓	\checkmark
30	15	10.5	15	30	42	60	60	84	120	150	212	300	✓	✓	\checkmark
100	50	35	50	100	141	200	200	282	400	500	707	1000	✓	~	\checkmark
300	150	105	150	300	424	600	600	848	×	1500	×	×	✓	✓	\checkmark
500	250	175	250	500	707	1000	1000	1410	×	2500	×	×	\checkmark	\checkmark	\checkmark
650	325	227.5	250	650	916.5	1300	1300	×	×	×	×	×	✓	✓	\checkmark
1000	500	350	500	1000	1410	×	2000	×	×	×	×	×	✓	✓	×

×	not applicable
✓	applicable
AC type	
A, F types	
B, B+ types	

Other technical specifications remain unchanged.

A.5 Profile Switzerland (profile code ALAI, AMAD)

Modifications in Chapter 4.4.1 Terminal voltage monitor

In the Terminal voltage monitor the positions of L and N indications are opposite to standard version.

Voltage monitor example:

Online voltages are displayed together with test terminal indication. All three test terminals are used for selected measurement.

Appendix B – Commanders (A 1314, A 1401)

B.1 **A** Warnings related to safety

Measuring category of commanders

Plug commander A 1314......300 V CAT II

Tip commander A 1401 (cap off, 18 mm tip)1000 V CAT II / 600 V CAT II / 300 V CAT II (cap on, 4 mm tip)1000 V CAT II / 600 V CAT III / 300 V CAT IV

- Measuring category of commanders can be lower than protection category of the instrument.
- If dangerous voltage is detected on the tested PE terminal, immediately stop all measurements, find and remove the fault!
- When replacing battery cells or before opening the battery compartment cover, disconnect the measuring accessory from the instrument and installation.
- Service, repairs or adjustment of instruments and accessories is only allowed to be carried out by competent authorized personnel!

B.2 Battery

The commander uses two AAA size alkaline or rechargeable Ni-MH battery cells. Nominal operating time is at least 40 h and is declared for cells with nominal capacity of 850 mAh.

Notes

- If the commander is not used for a long period of time, remove all batteries from the battery compartment.
- Alkaline or rechargeable Ni-MH batteries (size AAA) can be used. Metrel recommends only using rechargeable batteries with a capacity of 800 mAh or above.
- Ensure that the battery cells are inserted correctly otherwise the commander will not operate and the batteries could be discharged.

B.3 Description of commanders

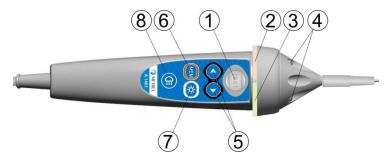


Figure B.1: Front side Tip commander (A 1401)

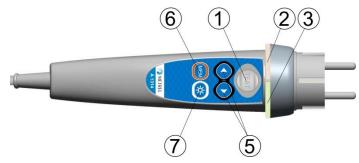


Figure B.2: Front side Plug commander (A 1314)

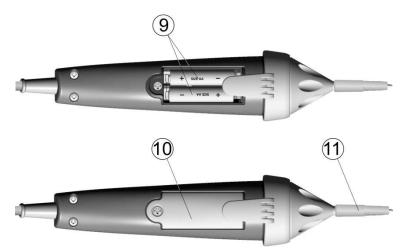
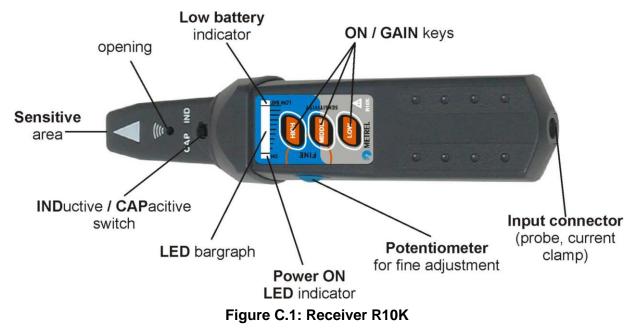


Figure B.3: Back side

1	TEST	TEST Starts measurements.
		Acts also as the PE touching electrode.
2	LED	Left status RGB LED
3	LED	Right status RGB LED
4	LEDs	Lamp LEDs (Tip commander)
5	Function selector	Selects test function.
6	MEM	Store / recall / clear tests in memory of instrument.
7	BL	Switches On / Off backlight on instrument
8	Lamp key	Switches On / Off lamp (Tip commander)
9	Battery cells	Size AAA, alkaline / rechargeable Ni-MH
10	Battery cover	Battery compartment cover
11	Cap	Removable CAT IV cap (Tip commander)

B.4 Operation of commanders

Both LED yellow	Warning! Dangerous voltage on the commander's PE
	terminal!
Right LED red	Fail indication
Right LED green	Pass indication
Left LED blinks blue	Commander is monitoring the input voltage
Left LED orange	Voltage between any test terminals is higher than 50 V
Both LEDs blink red	Low battery
Both LEDs red and switch off	Battery voltage too low for operation of commander


Appendix C – Locator receiver R10K

The highly sensitive hand-held **receiver R10K** detects the fields caused by the currents in the traced line. It generates sound and visual output according to the signal intensity. The operating mode switch in the head detector should always be set in IND (inductive) mode. The CAP (capacitive) operating mode is intended for operating in combination with other Metrel measuring equipment.

The built in field detector is placed in the front end of the receiver. External detectors can be connected via the rear connector.

Traced object must be energized when working with the EurotestXC.

Detectors	Operation			
In built inductive sensor (IND)	Tracing hidden wires.			
Current clamp (optional)	Connected through the rear connector.			
	Locating wires.			
Selective probe	Connected through the rear connector.			
	Locating fuses in fuse cabinets.			

The user can choose between three sensitivity levels (low, middle and high). An extra potentiometer is added for fine sensitivity adjustment. A buzzer sound and 10-level LED bar graph indicator indicates the strength of the magnetic field e.g. proximity of the traced object.

Note

The field strength can vary during tracing. The sensitivity should always be adjusted to optimum for each individual tracing.

Appendix D – Structure objects

Structure elements used in Memory Organizer are instrument's Profile dependent.

Symbol	Default name	Description
>	Node	Node
	Object	Object
F	Dist. board	Distribution board
F	Sub D. Board	Sub Distribution board
→ •	Local bonding	Local equipotential bonding
W	Water Service	Protective conductor for Water service
0	Oil service	Protective conductor for Oil service
L	Lightn. protect.	Protective conductor for Lightning protection
G	Gas service	Protective conductor for Gas service
S	Struct. steel	Protective conductor for Structural steel
	Other service	Protective conductor for Other incoming service
С	Earthling cond.	Earthing conductor
e	Circuit	Circuit
×	Connection	Connection
\$	Socket	Socket
Ň	Connection 3-ph	Connection - 3 phase
`	Light	Light
	Socket 3-ph	Socket - 3 phase
ÐÐ	RCD	RCD
•••	MPE	MPE

Symbol	Default name	Description
<u> </u>	Foundation gr.	Protective conductor for Foundation ground
	Equip. bond. rail	Equipotential bonding rail
$\overline{\mathbf{O}}$	House water m.	Protection conductor for House water meter
5	Main water p.	Protection conductor for Main water pipes
	Main gr. cond.	Main grounding conductor
\mathbf{O}	Inter. gas inst.	Protective conductor for Interior gas installation
L	Heat.inst.	Protective conductor for Heating installation
	Air cond. inst.	Protective conductor for Air conditioning installation
	Lift inst.	Protective conductor for Lift installation
@	Data proc. Inst.	Protective conductor for Lift Data processing installation
6	Teleph. Inst.	Protective conductor for Telephone installation
4	Lightn. prot. syst.	Protective conductor for Lightning protection system
Harry	Antenna inst.	Protective conductor for Antenna installation
===	Build. Constr.	Protective conductor for Building construction
→ <mark></mark>	Other conn.	Other connection
Ļ ¶	Earth electrode	Earth electrode
4	Lightning Sys.	Lightning System
∔ I	Lightning. electr.	Lightning electrode
	Inverter	Inverter
	String	String array
	Module	Module
	EVSE	Electro-Vehicle supply Equipment

Symbol	Default name	Description
	Level 1	Level 1
	Level 2	Level 2
	Level 3	Level 3
	Varistor	Varistor
→∕	LS connection	LS connection
	Machine	Machine
2	Appliance	Appliance (PRCD)

Appendix E – Tests and Measurements with adapters

		A 1507 3-phase active switch	A 1143 Euro Z 290 A	MI 3143 Euro Z 440 V	MI 3144 Euro Z 800 V	A 1632 eMobility Analyser	MD 9273 Leakage Clamp meter with Bluetooth®
Voltage	1-phase	-	-	-	-	-	-
	3-phase	•	-	-	-	-	-
Socket test b		-	-	-	-	-	-
Riso	50 V – 1000 V	•	-	-	-	-	-
	2500 V	-	-	-	-	-	-
Diagnostic	50 V – 1000 V	-	-	-	-	-	-
test	2500 V	-	-	-	-	-	-
Varistor		-	-	-	-	-	-
R low		•	-	-	-	-	-
Continuity		-	-	-	-	-	-
Ring Continu	ity	-	-	-	-	-	-
Socket		-	-	-	-	-	-
Rpe		•	-	-	-	-	-
RCD Auto		•	-	-	-	-	-
RCD Uc		•	-	-	-	-	-
RCD t		•	-	-	-	-	-
RCD I		•	-	-	-	-	-
Zs rcd		•	-	-	-	-	-
Z loop		•	-	-	-	-	-
Z auto		•	-	-	-	-	-
Z line		•	-	-	-	-	-
Voltage Drop)	•	-	-	-	-	-
Z loop mOhm		-	•	•	٠	-	-
Z line mOhm		-	•	•	•	_	-
High Current		-	-	•	•	_	-
Current clamp Meter		-	-	-	•	_	-
Rline mOhm		-	-	-	٠	-	-
ELR Current Injection Test		-	-	-	•	-	-
ELR Combination Time Test		-	-	-	•	-	-
Utouch		-	-	•	٠	-	-
Earth 3W		-	-	-	-	_	-

	A 1507 3-phase active switch	A 1143 Euro Z 290 A	MI 3143 Euro Z 440 V	MI 3144 Euro Z 800 V	A 1632 eMobility Analyser	MD 9273 Leakage Clamp meter with Bluetooth®
Earth 2 clamps	-	-	-	-	-	-
Ro	-	-	-	-	-	-
Power	-	-	-	-	-	-
Harmonics	-	-	-	-	-	-
Currents	-	-	-	-	-	-
IMD	-	-	-	-	-	-
ISFL	-	-	-	-	-	-
Locator	-	-	-	-	-	-
Illumination	-	-	-	-	-	-
Auto TT	-	-	-	-	-	-
Auto TN	-	-	-	-	-	-
Auto TN(rcd)	-	-	-	-	-	-
Auto IT	-	-	-	-	-	-
Diagnostic Test (EVSE)	-	-	-	-	•	-
Power CLAMP	-	-	-	-	-	•
Voltage CLAMP	-	-	-	-	-	•
Current CLAMP	-	-	-	-	-	•
Inrush CLAMP	-	-	-	-	-	•
Harmonics U CLAMP	-	-	-	-	-	•
Harmonics I CLAMP	-	-	-	-	-	•